Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 11, 2014

Effect of La Niña on The Global Mean Sea Level And North Pacifc Ocean Mass Over 2005-2011

  • Habib B. Dieng , Anny Cazenave EMAIL logo , Benoit Meyssignac , Olivier Henry , Karina von Schuckmann , Hindumathi Palanisamy and Jean Michel Lemoine


Interannual fluctuations of the global mean sea level are highly correlated with El Niño-Southern Oscillation (ENSO) events, with positive/negative anomalies during El Niño/La Niña. In a previous study we showed that during the 1997 - 1998 El Niño, a positive anomaly observed in the global mean sea level was mostly caused by an increase of the ocean mass component rather than by steric (thermal) effects. This result was related to an increase of precipitation over the tropical ocean and a deficit in land water storage. In the present study, we investigate the effect of the recent 2008 and 2011 La Niña events on the satellite altimetry-based global mean sea level. We find that the large global mean sea level drop associated with the 2011 La Niña results from the combined decrease of the steric and ocean mass components, with a slightly dominant contribution from the latter. We show that the ocean mass contribution to the global mean sea level drop is spatially confined over the north eastern tropical Pacific (just as was found previously for the 1997 - 1998 El Niño, but with opposite sign). Corresponding ocean mass spatial pattern is closely correlated to observed sea level and steric spatial patterns over the duration of the La Niña event. This is also observed for previous El Niño and La Niña events. Such a drop in ocean mass during ENSO in the eastern part of the tropical Pacific has not been reported before. It is possibly related to a temporary decrease in the net precipitation over the north eastern Pacific (opposite situation was found during the 1997 - 1998 El Niño).


Alkama R., Decharme B., Douville H., Becker M., Cazenave A., Sheffield J., Voldoire A., Tyteca S., Le Moigne P. (2010). Global evaluation of the ISBA-TRIP continental hydrologic system; Part 1 : a two-fold constraint using GRACE terrestrial water storage estimates and in situ river discharges J. Hydrometeorology, 11, 583-600, doi:10.1175/2010JHM1211.Search in Google Scholar

Barker P. M., Dunn J. R., Domingues C. M., and Wijffels S. E., (2011) Pressure Sensor Drifts in Argo and Their Impacts, J. Atmos. Ocean. Tech., 28, 1036-1049.Search in Google Scholar

Boening C., Willis J.K., Landerer F.W. and Nerem R.S. (2012). The 2011 La Niña: so strong, the oceans fell, Geophys. Res. Lett., 39, L19602, doi:10.1029/2012GL053055.10.1029/2012GL053055Search in Google Scholar

Cabanes, C., A. Gourazel, K. von Schuckmann, M. Hamon, V. Turpin, C. Coatanoan, S. Guinehut, C. Boone, N. Ferry, G. Reverdin, S. Pouliquen and P.Y. Le Traon (2013): The CORA dataset: validation and diagnostics of ocean temperature and salinity in situ measurements, Ocean Sci., 9, 1-18,, doi:10.5194/os-9-1-2013.10.5194/os-9-1-2013Search in Google Scholar

Cazenave A., O. Henry, S. Munier, B. Meyssignac, T. Delcroix, W. Llovel, H. Palanisamy and M. Becker, (2012). ENSO influence on the global mean sea level over 1993-2010, Marine Geodesy, 35(S1), 82-97.10.1080/01490419.2012.718209Search in Google Scholar

Chambers D. and J. Schröter (2011). Measuring ocean mass variability from satellite gravimetry, Journal of Geodynamics, 52, 333-343, doi:10.1016/j.jog.2011. in Google Scholar

Church J.A., N.J. White, L.F. Konikow, C.M. Domingues, J.G. Cogley, E. Rignot, J.M. Gregory, M.R. van den Broeke, A.J. Monaghan, and I. Velicogna (2011). Revisiting the Earth’s sea level and energy budgets from 1961 to 2008, Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.10.1029/2011GL048794Search in Google Scholar

Church J. A., P. U. Clark, A. Cazenave, J. M. Gregory, S. Jevrejeva, A. Levermann, M. A. Merrifield, G. A. Milne, R. S. Nerem, P. D. Nunn, A. J. Payne, W. T. Pfeffer, D. Stammer and A. S. Unnikrishnan (2013). Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press.Search in Google Scholar

Dai A. and Wigley T.M.L (2000), Global patterns of ENSO-induced precipitation, Geophys. Res. Lett., 27, 9, 1283-1286.Search in Google Scholar

Decharme B., Alkama R., Douville H., Becker M., Cazenave A., Sheffield J., Voldoire A., Tyteca S., Le Moigne P. (2010). Global evaluation of the ISBA-TRIP continental hydrologic system using GRACE; Part 2 : results, J. Hydrometeorology, 11, 601- 617.10.1175/2010JHM1212.1Search in Google Scholar

Fasullo J.T., Boening C. , Landerer F.W. and Nerem R.S. (2013). Australia’s unique influence on global mean sea level in 2010-2011, Geophys. Res. Lett., in press.Search in Google Scholar

Gaillard F., Autret E., Thierry V., Galaup P., Coatanoan C., and Loubrieu T. (2009), Quality control of large Argo data sets, J. Atmos. Oceanic Technol., 26, 337-351.Search in Google Scholar

Gordon A.L., Sprintall J., Van Aken H.M., Susanto D., Wijffels S., Molcard R., Ffield A., Pranowo W., Wirasantosa S. (2010) “The Indonesian Throughflow during 2004-2006 as observed by the INSTANT program.” “Modeling and Observing the Indonesian Throughflow”, Guest Editors: A. L. Gordon and V.M. Kamenkovich, Dynamics of Atmosphere and Oceans, vol(50) 115-128.10.1016/j.dynatmoce.2009.12.002Search in Google Scholar

Gu G. and Adler R.F. (2011), Precipitation and temperature variations on the interannual time scale : assessing the impact of ENSO and volcanic eruptions, J. Climate, 24, 2258-2270.10.1175/2010JCLI3727.1Search in Google Scholar

Ishii M. and Kimoto M. (2009), Reevaluation of historical ocean heat content variations with varying XBT and MBT depth bias corrections, Journal of Oceanography, 65, 287-299.10.1007/s10872-009-0027-7Search in Google Scholar

Hanna et al. (2013). Ice-sheet mass balance and climate change, Nature, 498, 51-59, doi:10.1038/nature12238.10.1038/nature12238Search in Google Scholar PubMed

Henry O., Ablain M., Meyssignac B., Cazenave A., Masters D., Nerem S. and G. Garric (2014). Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the JASON-1 operating period, Journal of Geodesy, in press.10.1007/s00190-013-0687-3Search in Google Scholar

Llovel W., Becker M., Cazenave A. and Crétaux J.F. (2010). Contribution of land water storage change to global mean sea level from GRACE and satellite altimetry, C.R. Geosciences, 342, 179-188.Search in Google Scholar

Llovel W., Becker M., Cazenave A., Jevrejeva S., Alkama R., Decharme B., Douville H., Ablain M. and Beckley B. (2011). Terrestrial waters and sea level variations on interannual time scale, Global Planet. Change, 75, 76-82. doi:10.1016/j.gloplacha.2010. in Google Scholar

Llovel W., Fukumori I. and Meyssignac B. (2013). Depth-dependent temperature change contributions to global mean thermosteric sea level rise from 1960 to 2010, Global Planet. Change, 101, 113-118.Search in Google Scholar

Meyssignac B. and Cazenave A. (2012). Sea level : a review of present-day and recent-past sea level change and variability, J. Geodyn., 58, 96-109.10.1016/j.jog.2012.03.005Search in Google Scholar

Nerem R. S., Chambers D. P., Choe C., and Mitchum G. T. (2010), Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions, Marine Geodesy, 33 (1), 435-446.10.1080/01490419.2010.491031Search in Google Scholar

Oki T. and Sud Y.C. (1998). Design of Total Runoff Integrating Pathways (TRIP), A Global River Channel Network. Earth Inter., Vol. 2., Paper 1.10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2Search in Google Scholar

Okumura Y. and C. Deser (2010). Asymmetry in the duration of El Nino and La Nina. J. Climate, 23, 5826-5843.10.1175/2010JCLI3592.1Search in Google Scholar

Trenberth K. and Smith L. (2005).The Mass of the Atmosphere: A Constraint on Global Analyses, J. Climate, 18, 864-875.10.1175/JCLI-3299.1Search in Google Scholar

Velicogna I. and Wahr J. (2013), Time variable gravity observations of ice sheet mass balance:precision and limitations of the GRACE satellite data, Geophys. Res. Lett., 40, 1-9, doi:10.1002/grl.50527.10.1002/grl.50527Search in Google Scholar

Von Schuckmann K., Gaillard F., and Le Traon P. Y. (2009). Global hydrographic variability patterns during 2003-2008, J. Geophys. Res., 114, C09007, doi:10.1029/2008JC005237.10.1029/2008JC005237Search in Google Scholar

Von Schuckmann K. and Le Traon P.-Y (2011). How well can we derive Global Ocean Indicators from Argo data?, Ocean Sci., 7, 783-791, doi:10.5194/os-7-783-2011.10.5194/os-7-783-2011Search in Google Scholar

Wahr J., Swenson S. and Velicogna I. (2006). Accuracy of GRACE mass estimates, Geophys. Res. Lett., 33, L06401, doi:10.1029/2005GL025305. 10.1029/2005GL025305Search in Google Scholar

Published Online: 2014-3-11
Published in Print: 2014-4-1

© by Anny Cazenave

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 28.9.2023 from
Scroll to top button