Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 12, 2014

Global Eustatic Sea-Level Variations for the Approximation of Geocenter Motion from Grace

  • Inga Bergmann-Wolf , Liangjing Zhang and Henryk Dobslaw

Abstract

Global degree-1 coefficients are derived by means of the method by Swenson et al. (2008) from a model of ocean mass variability and RL05 GRACE monthly mean gravity fields. Since an ocean model consistent with the GRACE GSM fields is required to solely include eustatic sea-level variability which can be safely assumed to be globally homogeneous, it can be empirically derived from GRACE aswell, thereby allowing to approximate geocenter motion entirely out of the GRACE monthly mean gravity fields. Numerical experiments with a decade-long model time-series reveal that the methodology is generally robust both with respect to potential errors in the atmospheric part of AOD1B and assumptions on global degree-1 coefficients for the eustatic sea-level model. Good correspondence of the GRACE RL05-based geocenter estimates with independent results let us conclude that this approximate method for the geocenter motion is well suited to be used for oceanographic and hydrological applications of regional mass variability from GRACE,where otherwise an important part of the signal would be omitted.

References

Blewitt G., Lavallee D., Clarke P. and Nurutdinov K. (2001), A new global mode of Earth deformation: Seasonal cycle detected, Science, 294, 5550, 2342-2345, 10.1126/science.1065328.Search in Google Scholar

Chambers D. P. and Willis J. K. (2009), Low-frequency exchange of mass between ocean basins (2009), J. Geophys. Res., 114, C11008, 10.1029/2009JC005518.Search in Google Scholar

Chambers D. P. (2004), Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, 13, L13310, 10.1029/2004GL020461.Search in Google Scholar

Chen J.L., Rodell M., Wilson C.R. and Famiglietti J.S. (2005), Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates, Geophys. Res. Lett., 32, L14405, 10.1029/2005GL022964.Search in Google Scholar

Chen J., Wilson C., Eanes R. and Nerem R. (1999), Geophysical interpretation of observed geocenter variations, J. Geophys. Res., 104, B2, 2683-2690, 10.1029/1998JB900019.10.1029/1998JB900019Search in Google Scholar

Cheng M., Tapley B. and Ries J. (2010), Geocenter Variations from Analysis of SLR data, IAG Commission 1 Symposium (2010), Reference Frames for Application in Geosciences (REFAG2010), Marne-La-Vallee, France.Search in Google Scholar

Cretaux J., Soudarin L., Davidson F., Gennero M., Berge-Nguyen M. and Cazenave A. (2002), Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data, J. Geophys. Res., 107, B12, 10.1029/2002JB001820.10.1029/2002JB001820Search in Google Scholar

Dahle C., Flechtner F., Gruber C., König R., Michalak G. and Neumayer K.-H. (2012), GFZ GRACE Level-2 Processing Standards Document for Level-2-Product Release 0005, Tech. rep., 10.2312/GFZ.b103-12-20.Search in Google Scholar

Davis J., Elosequi P., Mitrovica J. and Tamisiea M. (2004), Climatedriven deformation of the solid Earth from GRACE and GPS, Geophys. Res. Lett., 31, 24, 10.1029/2004GL021435.Search in Google Scholar

Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Holm E. V., Isaksen L., Kallberg P., Koehler M., Matricardi M., McNally A. P., Monge-Sanz B. M., Morcrette J. -J., Park B. -K., Peubey C., de Rosnay P., Tavolato C., Thepaut J. -N. and Vitart F. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 656A, 553-597, 10.1002/qj.828.10.1002/qj.828Search in Google Scholar

Dill R. and Dobslaw H. (2013), Numerical simulations of global-scale high-resolution hydrological crustal deformations, J. Geophys. Res., 118, 9, 5008-5017, 10.1002/jgrb.50353.10.1002/jgrb.50353Search in Google Scholar

Dobslaw H. and Thomas M. (2007), Impact of river run-off on global ocean mass redistribution, Geophys. J. Int., 168, 2, 10.1111/j.1365-246X.2006.03247.x.10.1111/j.1365-246X.2006.03247.xSearch in Google Scholar

Dobslaw H., Flechtner F., Bergmann-Wolf I., Dahle C., Dill R., Esselborn S., Sasgen I. and Thomas M. (2013), Simulating highfrequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05, J. Geophys. Res., 10.1002/jgrc.20271.Search in Google Scholar

Eanes R. (2000), SLR solutions from the University of Texas Center for Space Research, Geocenter from TOPEX SLR/DORIS, 1992-2000, http://sbgg.jpl.nasa.gov/dataset.html, IERS Spec. Bur. for Gravity/ Geocent., Pasadena, Calif.Search in Google Scholar

Ettema J., van den Broeke M. R., van Meijgaard E., van de Berg W. J., Bamber J. L., Box J. E. and Bales R. C. (2009), Higher surface mass balance of the Greenland ice sheet revealed by highresolution climate modeling, Geophys. Res. Lett., 36, L12501, 10.1029/2009GL038110.Search in Google Scholar

Fasullo J. T., Boening C., Landerer F. W. and Nerem R. S. (2013), Australia’s unique influence on global sea level in 2010-2011, Geophys. Res. Lett., 40, 16, 4368-4373, 10.1002/grl.50834.Search in Google Scholar

Flechtner F. and Dobslaw H. (2013), AOD1B Product Description Document for Product Release 05, Tech. rep..Search in Google Scholar

Fritsche M., Dietrich R., Ruelke A., Rothacher M. and Steigenberger P. (2010), Low-degree earth deformation from reprocessed GPS observations, GPS Solut., 14, 2, 165-175, 10.1007/s10291-009-0130-7.Search in Google Scholar

Gruber Th., Bamber J. L., Bierkens M. F. P., Dobslaw H., Murböck M., Thomas M., van Beek L. P. H., van Dam T., Vermeersen L. L. A. and Visser P. N. A. M. (2011), Simulation of the time-variable gravity field by means of coupled geophysical models, Earth System Science Data, 3, 1, 19-35,10.5194/essd-3-19-2011.Search in Google Scholar

Hughes, C. W., Tamisea, M. E., Bingham, R. J. and Williams, J. (2012), Weighing the ocean: Using a single mooring tomeasure changes in the mass of the ocean, Geophys. Res. Lett., 39, 7, L17602, 10.1029/2012GL052935.Search in Google Scholar

Jansen M. J. F., Gunter B. C. and Kusche J. (2009), The impact of GRACE, GPS and OBP data on estimates of global mass redistribution, Geophys. J. Int., 177, 1, 1-13, 10.1111/j.1365-246X.2008.04031.x.10.1111/j.1365-246X.2008.04031.xSearch in Google Scholar

Klees R., Zapreeva E. H.,Winsemius H. C. and Savenije H. H. G. (2007), The bias in GRACE estimates of continental water storage variations, Hydrol. Earth Syst. Sci., 11, 4, 1227-1241, 10.5194/hessd-3-3557-2006.Search in Google Scholar

Kuhlmann J., Dobslaw H. and Thomas M. (2011), Improved modeling of sea level patterns by incorporating self-attraction and loading, J. Geophys. Res., 116, C11036,10.1029/2011JC007399.10.1029/2011JC007399Search in Google Scholar

Kusche J. (2007), Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models, J. Geod., 81, 11, 733-749, 10.1007/s00190-007-0143-3.10.1007/s00190-007-0143-3Search in Google Scholar

Lavallée D., van Dam T., Blewitt G. and Clarke P. (2006), Geocenter motions from GPS: A unified observation model, J. Geophys. Res., 111, B5, 10.1029/2005JB003784.10.1029/2005JB003784Search in Google Scholar

Lorbacher K., Marsland S. J., Church J. A., Griffies S. M. and Stammer D. (2012), Rapid barotropic sea level rise from ice sheet melting, J. Geophys. Res., 117, C06003, 10.1029/2011JC007733.10.1029/2011JC007733Search in Google Scholar

Paulson A., Zhong S. andWahr J. (2007), Inference ofmantle viscosity from GRACE and relative sea level data, Geophys. J. Int., 171, 2, 497-508, 10.1111/j.1365-246X.2007.03556.x.10.1111/j.1365-246X.2007.03556.xSearch in Google Scholar

Petit G., and Luzum B. (2010), IERS Convention (2010), IERS Technical Note 36, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main.Search in Google Scholar

Rietbroek, R., Brunnabend, S.-E., Dahle, C., Kusche, J., Flechtner, F., Schröter, J. and Timmermann, R. (2009), Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution, J. Geophys. Res., 114, C11, C11004, 10.1029/2009JC005449.10.1029/2009JC005449Search in Google Scholar

Rietbroek R., Fritsche M., Brunnabend S.-E., Daras I., Kusche J., Schröter J., Flechtner F. and Dietrich R. (2012), Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data, J. Geodyn., 59-60, 64-71, 10.1016/j.jog.2011.02.003.10.1016/j.jog.2011.02.003Search in Google Scholar

Siegismund F., Romanova V., Köhl A. and Stammer D. (2011), Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations, J. Geophys. Res., 116, C7, C07021, 10.1029/2010JC006727.10.1029/2010JC006727Search in Google Scholar

Swenson S. and Wahr J. (2002), Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE)measurements of time-variable gravity, J. Geophys. Res., 107, B9, 2193, 10.1029/2001JB000576.10.1029/2001JB000576Search in Google Scholar

Swenson, S., Chambers, D. andWahr, J. (2008), Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B8, B08410, 10.1029/2007JB005338.10.1029/2007JB005338Search in Google Scholar

Tamisiea, Mark E. (2011), Ongoing glacial isostatic contributions to observations of sea level change, Geophys. J. Int., 186, 3, 1036-1044, 10.1111/j.1365-246X.2011.05116.x.10.1111/j.1365-246X.2011.05116.xSearch in Google Scholar

Wahr J., Molenaar M. and Bryan F. (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103, B12, 30205-30229, 10.1029/98JB02844.10.1029/98JB02844Search in Google Scholar

Wouters B., Riva R. E. M., Lavallee D. A. and Bamber J. L. (2011), Seasonal variations in sea level induced by continental water mass: First results from GRACE, Geophys. Res. Lett., 38, L03303, 10.1029/2010GL046128.10.1029/2010GL046128Search in Google Scholar

Zenner L., Fagiolini E., Daras I., Flechtner F., Gruber T., Schmidt T. and Schwarz G. (2012), Non-tidal atmospheric and oceanicmass variations and their impact on GRACE data analysis, J. Geodyn., 59, SI, 9-15, 10.1016/j.jog.2012.01.010.Search in Google Scholar

Published Online: 2014-4-12
Published in Print: 2014-4-1

© by Inga Bergmann-Wolf

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 26.9.2023 from https://www.degruyter.com/document/doi/10.2478/jogs-2014-0006/html
Scroll to top button