Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 13, 2013

MIP-based immunoassays: State of the Art, limitations and Perspectives

  • Claudio Baggiani EMAIL logo , Laura Anfossi and Cristina Giovannoli
From the journal Molecular Imprinting


Immunoassay is one of the most popular analytical methods with widespread applications. However, it presents several drawbacks because of the proteic nature of the antibodies. Molecular imprinting technology has shown a growing ability to prepare artificial molecular recognition systems, with binding properties very similar to those of natural antibodies. This review deals with the application of molecular imprinting technology to immunoassay, with an attention for the state of the art, the current limitations and the possible solutions to these issues.


[1] Sellergren B. (ed), Molecularly imprinted polymers: manmade mimics of antibodies and their applications in analytical chemistry, Elsevier Science, Amsterdam, The Netherlands, 2004. Search in Google Scholar

[2] Harlow E., Lane D., Antibodies: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA, 1988 Search in Google Scholar

[3] Vlatakis G., Anderson L.I., Muller R., Mosbach K., Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361, 645-647. 10.1038/361645a0Search in Google Scholar

[4] Ekins R.P., The estimation of thyroxine in human plasma by an electrophoretic technique. Clin. Chim. Acta, 1960, 5, 453- 459. 10.1016/0009-8981(60)90051-6Search in Google Scholar

[5] Yalow R.S., Berson S.A., Assay of plasma insulin in human subjects by immunological methods, Nature, 1959,184, 1648-1649. 10.1038/1841648b0Search in Google Scholar

[6] Tijssen P., Practice and theory of enzyme immunoassay, Elsevier Science, Amsterdam, The Netherlands, 1985. Search in Google Scholar

[7] Ekins R.P., Ligand assays: from electrophoresis to miniaturized microarrays, Clin. Chem., 1998, 44, 2015-2030. 10.1093/clinchem/44.9.2015Search in Google Scholar

[8] Ramström O., Ye L., Mosbach K., Artificial antibodies to corticosteroids prepared by molecular imprinting, Chem. Biol., 1996, 3, 471-477. 10.1016/S1074-5521(96)90095-2Search in Google Scholar

[9] Anderson L.I., Muller R., Vlatakis G., Mosbach K., Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine, Proc. Natl. Acad. Sci. USA, 1995, 92, 4788-4792. 10.1073/pnas.92.11.4788Search in Google Scholar

[10] Senholdt M., Siemann M., Mosbach K., Anderson L.I., Determination of cyclosporin A and metabolites total concentration using a molecularly imprinted polymer based radioligand binding assay, Anal. Lett., 1997, 30, 1809- 1821. 10.1080/00032719708001699Search in Google Scholar

[11] Siemann M., Anderson L.I., Mosbach K., Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers, J. Agric. Food Chem., 1996, 44, 141-145. 10.1021/jf950233nSearch in Google Scholar

[12] Muldoon M.T., Stanker L.H., Polymer synthesis and characterization of a molecularly imprinted sorbent assay for atrazine, J. Agric. Food Chem., 1995, 43, 1424-1427. 10.1021/jf00054a002Search in Google Scholar

[13] Berglund J., Nicholls I.A., Lindbladh C., Mosbach K., Recognition in molecularly imprinted polymer a2- adrenoreceptor mimics, Bioorg. Med. Chem. Lett., 1996, 6, 2237-2242. 10.1016/0960-894X(96)00406-4Search in Google Scholar

[14] Anderson L.I., Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol, Anal. Chem., 1996, 68, 111-117. 10.1021/ac950668+Search in Google Scholar

[15] Bengtsson H., Roos U., Anderson L.I., Molecular imprint based radioassay for direct determination of S-propranolol in human plasma, Anal. Commun., 1997, 34, 233-235. 10.1039/a703977hSearch in Google Scholar

[16] Haupt K., Dzgoev A., Mosbach K., Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element, Anal. Chem., 1998, 70, 628-631. 10.1021/ac9711549Search in Google Scholar

[17] Ansell R.J., Mosbach K, Magnetic molecularly imprinted polymer beads for drug radioligand binding assay, 1998, 123, 1611-1616. 10.1039/a801903gSearch in Google Scholar

[18] Ye L., Cormack P.A.G., Mosbach K., Molecularly imprinted monodisperse microspheres for competitive radioassay, Anal. Commun., 1999, 36, 35-38. 10.1039/a809014iSearch in Google Scholar

[19] Tse Sum Bui B., Belmont A.S., Witters H., Haupt K., Molecular recognition of endocrine disruptors by synthetic and natural 17b-estradiol receptors: a comparative study, Anal. Bioanal. Chem., 2008, 390, 2081-2088. 10.1007/s00216-008-1949-4Search in Google Scholar

[20] Ye L., Surugiu I., Haupt K., Scintillation proximity assay using molecularly imprinted microspheres, Anal.,Chem., 2002, 74, 959-964. 10.1021/ac015629eSearch in Google Scholar

[21] Engvall E., Perlmann P.G., Enzyme-linked immunosorbent assay of immunoglobulin G, Immunochemistry, 1971, 8, 871- 874. 10.1016/0019-2791(71)90454-XSearch in Google Scholar

[22] Van Weeman B.K., Schuurs A.H.W.M., Immunoassay using antigen-enzyme conjugates, FEBS Lett., 1971, 15, 232-236. 10.1016/0014-5793(71)80319-8Search in Google Scholar

[23] Surugiu I., Ye L., Yilmaz E., Dzgoev A., Danielsson B., Mosbach K., Haupt K., An enzyme-linked molecularly imprinted sorbent assay, Analyst, 2000, 125, 13-16. 10.1039/a908871gSearch in Google Scholar

[24] Surugiu I., Danielsson B., Ye L., Mosbach K., Haupt K., Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody, Anal. Chem., 2001, 73, 487-491. 10.1021/ac0011540Search in Google Scholar

[25] Surugiu I., Svitel J., Ye L., Haupt K., Danielsson B., Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody, Anal. Chem., 2001. 73, 4388-4392. 10.1021/ac0101757Search in Google Scholar

[26] Piletsky S.A., Piletska E.V., Chen B., Karim K., Weston D., Barrett G., Lowe P., Turner A.P.F., Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination, Anal. Chem., 2000, 72, 4381-4385. 10.1021/ac0002184Search in Google Scholar

[27] Piletsky S.A., Piletska E.V., Bossi A., Karim K., Lowe P., Turner A.P.F., Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays, Biosens. Bioelectron., 2001, 16, 701-707. 10.1016/S0956-5663(01)00234-2Search in Google Scholar

[28] Bossi A., Piletsky S.A., Piletska E.V., Righetti P.G., Turner A.P.F., Surface-grafted molecularly imprinted polymers for protein recognition, Anal. Chem., 2001, 73, 5281-5286. 10.1021/ac0006526Search in Google Scholar

[29] Wang S., Xu Z.X., Fang G.Z., Zhang Y., Liu B., Zhu H.P., Development of a biomimetic enzyme-linked immunosorbent assay method for the determination of estrone in environmental water using novel molecularly imprinted films of controlled thickness as artificial antibodies, J. Agric. Food. Chem., 2009, 57, 4528-4534. 10.1021/jf900505kSearch in Google Scholar

[30] Fang G.Z., Lu J.P., Pan M.F., Li W., Ren L., Wang S., Substitution of antibody with molecularly imprinted film in enzyme-linked immunosorbent assay for determination of trace ractopamine in urine and pork samples, Food Anal. Methods, 2011, 4, 590-597. 10.1007/s12161-011-9206-4Search in Google Scholar

[31] Wang J.P., Tang W.W., Fang G.Z., Pan M.F., Wang S., Development of a biomimetic enzyme-linked immunosorbent assay method for the determination of methimazole in urine sample, J. Chin. Chem. Soc., 2011, 58, 463-469. 10.1002/jccs.201190007Search in Google Scholar

[32] Meng L., Qiao X.G., Xu Z.X., Xin J.H., Wang L., Development of a direct competitive biomimetic enzyme-linked immunosorbent assay based on a hydrophilic molecularly imprinted membrane for the determination of trichlorfon residues in vegetables, Food Anal. Methods, 2012, 5, 1229- 1236. 10.1007/s12161-012-9366-xSearch in Google Scholar

[33] Rachkov A., McNiven S., El’skaya A., Yano K., Karube I., Fluorescence detection of beta-estradiol using a molecularly imprinted polymer, Anal. Chim. Acta, 2000, 405, 23-29. 10.1016/S0003-2670(99)00743-6Search in Google Scholar

[34] Piletsky S.A., Piletskaya E.V., Elskaya A.V., Levi R., Yano K., Karube I., Opticai detection system for triazine based on molecularly imprinted polymers, Anal. Lett., 1997, 30, 445- 455. 10.1080/00032719708001793Search in Google Scholar

[35] Nicholls C., Karim K., Piletsky S., Saini S., Setford S., Displacement imprinted polymer receptor analysis (DIPRA) for chlorophenolic contaminants in drinking water and packaging materials, Biosens. Bioelectron., 2006, 21, 1171– 1177. 10.1016/j.bios.2005.05.002Search in Google Scholar

[36] Haupt K., Mayes A.G., Mosbach K., Herbicide assay using an imprinted polymer-based system analogous to competitive fluoroimmunoassays, Anal. Chem., 1998, 70, 3936-3939. 10.1021/ac980175fSearch in Google Scholar

[37] Haupt K., Molecularly imprinted sorbent assays and the use of non-related probes, React. Funct. Polym., 1999, 41, 125- 131. 10.1016/S1381-5148(99)00023-1Search in Google Scholar

[38] Benito-Pena E., Moreno-Bondi M.C., Aparicio S., Orellana G., Cederfur J., Kempe M., Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays, Anal. Chem., 2006, 78, 2019-2027. 10.1021/ac051939bSearch in Google Scholar

[39] Urraca J.L., Moreno-Bondi M.C., Orellana G., Hall A.J., Sellergren B., Molecularly imprinted polymers as antibody mimics in automated on-line fluorescent competitive assays, Anal. Chem., 2007, 79, 4915-4923. 10.1021/ac070277iSearch in Google Scholar

[40] Lu C.H., Zhou W.H., Han B., Yang H.H., Chen X., Wang X.R., Surface-imprinted core-shell nanoparticles for sorbent assays, Anal. Chem., 2007, 79, 5457-5461. 10.1021/ac070282mSearch in Google Scholar

[41] Hunt C.E., Pasetto P., Ansell R.J., Haupt K., A fluorescence polarisation molecular imprint sorbent assay for 2,4-D: a nonseparation pseudo-immunoassay, Chem. Commun., 2006, 16, 1754-1761. 10.1039/b516194kSearch in Google Scholar

[42] Levi R., McNiven S., Piletsky S.A., Cheong S.H., Yano K., Karube I., Optical detection of chloramphenicol using molecularly imprinted polymers, Anal. Chem., 1997, 69, 2017-2021. 10.1021/ac960983bSearch in Google Scholar

[43] McNiven S., Kato M., Levi R., Yano K., Karube I., Chloramphenicol sensor based on an in situ imprinted polymer, Anal. Chim. Acta, 1998, 365, 69-74. 10.1016/S0003-2670(98)00096-8Search in Google Scholar

[44] Suarez-Rodriguez J.L., Diaz-Garcia M.E., Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers, Biosens. Bioelectron., 2001, 16, 955-961. 10.1016/S0956-5663(01)00243-3Search in Google Scholar

[45] Piletsky S.A., Terpetschnig E., Anderson H.S., Nichols I.A., Wolfbeis O.S., Application of non-specific fluorescent dyes for monitoring enantio-selective ligand binding to molecularly imprinted polymers, Fresenius J. Anal. Chem., 1999, 364, 512-516. 10.1007/s002160051377Search in Google Scholar

[46] Leute R.K., Uliman R.F., Goldstein A., Herzenberg L.A., Spin immunoassay technique for determination of morphine, Nature, 1972, 236, 93-94. 10.1038/newbio236093a0Search in Google Scholar

[47] Haga M., Itagaki H., Sugawara S., Okano T., Liposome immunosensors for theophylline, Biochem. Biophys. Res. Commun., 1980, 95, 187-192. 10.1016/0006-291X(80)90722-6Search in Google Scholar

[48] Barbas C.F., Burton D.R., Scott J.K., Phage display: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA, 2004. Search in Google Scholar

[49] Baggiani C., Giovannoli C., Anfossi L., Passini C., Baravalle P., Giraudi G., A connection between the binding properties of imprinted and non-imprinted polymers: a change of perspective in molecular imprinting, J. Am. Chem. Soc., 2012, 134, 1513-1518. 10.1021/ja205632tSearch in Google Scholar PubMed

[50] Guerreiro A.R., Chianella I., Piletska E., Whitcombe M.J., Piletsky S.A., Selection of imprinted nanoparticles by affinity chromatography, Biosens. Bioelectron., 2009, 24, 2740-2743. 10.1016/j.bios.2009.01.013Search in Google Scholar PubMed

[51] Hoshino Y., Haberaecker W.W., Kodama T., Zeng Z., Okahata Y., Shea K.J., Affinity purification of multifunctional polymer nanoparticles, J. Am. Chem. Soc., 2010, 132, 13648–13650. 10.1021/ja1058982Search in Google Scholar PubMed PubMed Central

[52] Giraudi G., Baggiani C., Strategy for fractionating high affinity antibodies to steroid hormones by affinity chromatography, Analyst, 1996, 121, 939-44. 10.1039/an9962100939Search in Google Scholar PubMed

[53] Dirion B., Cobb Z., Schillinger E., Andersson L.I., Sellergren B., Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design, J. Am. Chem. Soc., 2003, 125, 15101-15109. 10.1021/ja0355473Search in Google Scholar PubMed

[54] Oral E., Peppas N.A., Hydrophilic molecularly imprinted poly(hydroxyethyl-methacrylate) polymers. J. Biomed. Mater. Res. A, 2006, 78A, 205-210. 10.1002/jbm.a.30725Search in Google Scholar PubMed

[55] Yang K.G., Berg M.M., Zhao C.S., Ye L., One-pot synthesis of hydrophilic molecularly imprinted nanoparticles, Macromolecules, 2009, 42, 8739-8746. 10.1021/ma901761zSearch in Google Scholar

[56] Pan G.Q., Zhang Y., Guo X.Z., Li C.X., Zhang H.Q., An efficient approach to obtaining water-compatible and stimuliresponsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens. Bioelectron., 2010, 26, 976-982. 10.1016/j.bios.2010.08.040Search in Google Scholar PubMed

[57] Parisi O.I., Cirillo G., Curcio M., Puoci F., Iemma F., Spizzirri U.G., Picci N., Surface modifications of molecularly imprinted polymers for improved template recognition in water media, J. Polym. Res., 2010, 17, 355-362. 10.1007/s10965-009-9322-7Search in Google Scholar

[58] Pan G.Q., Ma Y.. Zhang Y.. Guo X.Z., Li C.X., Zhang H.Q., Controlled synthesis of water-compatible molecularly imprinted polymer microspheres with ultrathin hydrophilic polymer shells via surface-initiated reversible addition-fragmentation chain transfer polymerization, Soft Matter, 2011, 7, 8428-8439. 10.1039/c1sm05497jSearch in Google Scholar

[59] Lu, C.H., Zhou W.H., Han B., Yang H.H., Chen X., Wang X.R., Surface-imprinted core-shell nanoparticles for sorbent assays, Anal. Chem., 2007, 79, 5457-5461. 10.1021/ac070282mSearch in Google Scholar PubMed

[60] Balamurugan S., Spivak D.A., Molecular imprinting in monolayer surfaces, J. Mol. Recogn., 2011, 24, 915-929. 10.1002/jmr.1150Search in Google Scholar PubMed

[61] Halhalli M.R., Schillinger E., Aureliano C.S.A., Sellergren B., Thin walled imprinted polymer beads featuring both uniform and accessible binding sites, Chem. Mater., 2012, 24, 2909-2919. 10.1021/cm300965tSearch in Google Scholar

[62] Byrne M.E., Salian V., Molecular imprinting within hydrogels II: Progress and analysis of the field, Int. J. Pharm., 2008, 364, 188-212. 10.1016/j.ijpharm.2008.09.002Search in Google Scholar PubMed

[63] Liu X.Y., Zhou T., Du Z.W., Wei Z., Zhang J.H., Recognition ability of temperature responsive molecularly imprinted polymer hydrogels, Soft Matter, 2011, 7, 1986-1993. 10.1039/c0sm00192aSearch in Google Scholar

[64] Ran D., Wang Y.Z., Jia X.P., Nie C., Bovine serum albumin recognition via thermosensitive molecular imprinted macroporous hydrogels prepared at two different temperatures, Anal. Chim. Acta, 2012, 723, 45-53. 10.1016/j.aca.2012.02.020Search in Google Scholar PubMed

Received: 2013-04-09
Accepted: 2013-06-12
Published Online: 2013-08-13

©2014 Claudio Baggiani et al.

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial No-Derivatives License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 28.2.2024 from
Scroll to top button