Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 26, 2014

Focused Ion Beam nano-patterning from traditional applications to single ion implantation perspectives

Jacques Gierak
From the journal Nanofabrication

Abstract

In this article we review some fundamentals of the Focused Ion Beam (FIB) technique based on scanning finely focused beams of gallium ions over a sample to perform direct writing. We analyse the main limitations of this technique in terms of damage generation or local contamination and through selected examples we discuss the potential of this technique in the light of the most sensitive analysis techniques. In particular we analyse the limits of Ga-FIB irradiation for the patterning of III-V heterostructures, thin magnetic layers, artificial defects fabricated onto graphite or graphene and atomically thin suspended membranes. We show that many of these earlypointed “limitations” with appropriate attention and analysis can be valuable for FIB instrument development, avoided, or even turned into decisive advantages. Such new methods transferable to the fabrication of devices or surface functionalities are urgently required in the emerging nanosciences applications and markets.

References

[1] Yamamoto M., Sato M., Kyogoku H., Aita K., Nakagawa Y., Yasaka A., et al., Submicron Mask Repair Using Focused Ion Beam Technology, Proc. SPIE 0632, Electron-Beam, X-Ray, and Ion-Beam Technology for Submicrometer Lithographies V, 97 (June 30, 1986); doi:10.1117/12.963674 Search in Google Scholar

[2] Reyntjens S., Puers R., A review of focused ion beam applications in microsystem technology, J. Micromech. Microeng., 2001, 11, 287–300. Search in Google Scholar

[3] Ziegler J., SRIM - the stopping and range of ions in matter, http://www.srim.org/. Search in Google Scholar

[4] Levi-Setti R., Crow G., Wang Y.L., Parker N.W., Mittleman R., High-Resolution Scanning-Ion-Microprobe Study of Graphite and its Intercalation Compounds, Phys. Rev. Lett., 1985, 54, 2615. Search in Google Scholar

[5] Orloff J., Focused Ion Beams, Sci. Am. Intl. Ed., 1991, 265, 74-79. Search in Google Scholar

[6] Seliger R.L., Kubena R.L., Olney R.D., Ward J.W., Wang V., High-resolution, ion-beam processes for microstructure fabrication, J. Vac. Sci. Technol., 1979, 16, 1610. Search in Google Scholar

[7] Beale M.I.J., Broughton C., Deshmukh V.G.I., Focused ion beams for lithography and direct doping in VLSI device fabrication, Microelectron. Eng., 1986, 4, 233-249. Search in Google Scholar

[8] Lehrer et coll., EIPBN 2001, Washington, 2001. Search in Google Scholar

[9] Gamo K., Miyake Y., Yuba Y., Namba S., Kasahara H., Sawaragi H., Aihara R, Defect study in GaAs bombarded by low-energy focused ion beams, J. Vac. Sci. Technol. B, 1988, 6, 2124. Search in Google Scholar

[10] Hirayama Y., Susuki Y., Okamoto H., Compositional disordering and very-fine lateral definition of GaAs-AlGaAs superlattices by focused Ga ion beams, Surf. Sci., 1986, 174, 98-104. Search in Google Scholar

[11] Yamamoto T., Yanagisawa J., Gamo K., Takaoka S., Murase K., Estimation of damage induced by focused Ga ion beam irradiation, Jpn. J. Appl. Phys., 1993, 32, 6268-6273. Search in Google Scholar

[12 Kazazis D., Genner U., Gierak J. et al, to be presented at EIPBN conference 2014 Search in Google Scholar

[13] Gierak J., Focused ion beam technology and ultimate applications, Semicond. Sci. Technol., 2009, 24, 043001. Search in Google Scholar

[14] Orloff J., Swanson L.W., Utlaut M., Fundamental limits to imaging resolution for focused ion beams, J. Vac. Sci. Technol. B, 1996, 14, 3759-3763. Search in Google Scholar

[15] Kubena R.L., Ward J.W., Stratton F.P., Joyce R.J., Atkinson G.M., A low magnification focused ion beam system with 8 nm spot size, J. Vac. Sci. Technol. B, 1991, 9, 3079. Search in Google Scholar

[16] Vieu C., Ben Assayag G., Gierak J., Observation and simulation of focused ion beam induced damage, Nucl. lnstr. Meth. Phys. Res., 1994, 93, 439-446. Search in Google Scholar

[17] Orloff J., Comparison of optical design approaches for use with liquid metal ion sources, J. Vac. Sci. Technol. B, 1987, 5, 175. Search in Google Scholar

[18] Kruit P., Jiang X.R., Influence of Coulomb interactions on choice of magnification, aperture size, and source brightness in a two lens focused ion beam column, J. Vac. Sci. Technol. B, 1996, 14, 1635. Search in Google Scholar

[19] Smith N.S., Tesch P.P., Martin N.P., Boswel R.W., New Ion Probe for Next Generation FIB, SIMS, and Nano-Ion Implantation, Microscopy Today, 2009, 17, 18-22. Search in Google Scholar

[20] Carleson, Routh, Kelley, Young, High-Throughput, Site-Specific Inspection of 3D Interconnects using Plasma FIB Technology, 3D-IC Metrology Workshop, San Francisco CA USA, July 11, 2012. Search in Google Scholar

[21] Levi-Setti R., Proton scanning microscopy: Feasibility and promise, in Scanning Electron Microscopy/1974, Johari O., Corvin I., ed., IIT Research Institute, Chicago, Ill., 1974, 125-134. Search in Google Scholar

[22] Müller E.W., Das Feldionenmikroskop, Zeitschrift für Physik, 1951, 131, 136-142. Search in Google Scholar

[23] Suvorov V.G., Forbes R.G., Theory of minimum emission current for a non-turbulent liquid-metal ion source, Microelectron. Eng., 2004, 73-74, 126-131. Search in Google Scholar

[24] Van Es J.J., Gierak J., Forbes R.G., Suvorov V.G., Van den Berghe T., Dubuisson P., et al., An improved gallium liquid metal ion source geometry for nanotechnology, Microelectron. Eng., 2004, 73-74, 132-138. Search in Google Scholar

[25] Sudraud P., Ben Assayag G., Bon M., Focused-ion-beam milling, scanning-electron microscopy, and focused-droplet deposition in a single microcircuit surgery tool, J. Vac. Sci. Technol. B, 1988, 6, 234. Search in Google Scholar

[26] Gnauck P., Vacuum’s Best 2005: Special Issue of “Vacuum in Research and Practice”, 2005. Search in Google Scholar

[27] Thoms S., Electron Beam Lithography, in Nanofabrication Handbook, Cabrini S., Kawata S., ed., CRC Press, 2012. Search in Google Scholar

[28] Gierak J., Jede R., Hawkes P., Nanolithography with Focused Ion Beams, in Nanofabrication Handbook, Cabrini S., Kawata S., ed., CRC Press, 2012. Search in Google Scholar

[29] NanoFIB 2004, EC research project See: ftp://ftp.cordis.europa. eu/pub/nanotechnology/docs/n_s_nanofib_27052002.pdf Search in Google Scholar

[30] Gierak J., Septier A., Vieu C., Design and realization of a very high-resolution FIB nanofabrication instrument, Nucl. Instr. and Meth. A, 1999, 427, 91-98. Search in Google Scholar

[31] Lencova B., http://www.lencova.com/; Munro E., http://www. mebs.co.uk/. Search in Google Scholar

[32] Sugimoto Y., Akita K., Taneya M., Wawanishi H., Aihara R., Watahiki T., A multichamber system for in situ lithography and epitaxial growth of GaAs, Rev. Sci. Instrum., 1991, 62, 1828-1835. Search in Google Scholar

[33] Chen C.H., Green D.L., Hu E.L., Ibbestson J.P., Petroff P.M., Radiation enhanced diffusion of low energy ion-induced damage, Appl. Phys. Lett., 1996, 69, 58-60. Search in Google Scholar

[34] Ben Assayag G., Vieu C., Gierak J., Sudraud P., Corbin A., New characterization method of ion current-density profile based on damage distribution of Ga+ focused-ion beam implantation in GaAs, J. Vac. Sci. Technol. B, 1993, 11, 2420-2426. Search in Google Scholar

[35] Gierak J., Ben Assayag G., Schneider M., Vieu C., Marzin J.Y., 3D defect distribution induced by focused ion beam irradiation at variable temperatures in a GaAsGaAlAs multi quantum well structure, Microelectron. Eng., 1996, 30, 253-256. Search in Google Scholar

[36] Chappert C., Bernas H., Ferre J., Kottler V., Jamet J.P., Chen Y., et al., Planar Patterned Magnetic Media Obtained by Ion Irradiation, Science, 1998, 280, 1919-1922. Search in Google Scholar

[37] Johnson W.L., Cheng Y.T., Van Rossum M., Nicolet M., When is thermodynamics relevant to ion-induced atomic rearrangements in metals?, Nucl. Instrum. Methods Phys. Res. B, 1985, 7, 657-665. Search in Google Scholar

[38] Albrecht M., Rettner C.T., Moser A., Best M.E., Terris B.D., Recording performance of high-density patterned perpendicular magnetic media, Appl. Phys. Lett., 2002, 81, 2875-2877. Search in Google Scholar

[39] Ruotolo A., Wiebel S., Jamet J.P., Vernier N., Pullin D., Gierak J., Ferré J., Magneto-optical microscopy as a favourite tool to probe focused ion beam patterning at low dose, Nanotechnology, 2006, 17, 3308–3312. Search in Google Scholar

[40] Rau N., Stratton F., Fields C., Ogawa T., Neureuther A., Kubena R., Willson G., Shot-noise and edge roughness effects in resists patterned at 10 nm exposure, J. Vac. Sci. Technol. B, 1998, 16, 3784. Search in Google Scholar

[41] Mélinon P., Hannour A., Bardotti L., Prével B., Gierak J., Bourhis E., et al., Ion beam nanopatterning in graphite: characterization of single extended defects, Nanotechnology, 2008, 19, 235305. Search in Google Scholar

[42] Perez A., Bardotti L., Prevel B., Jensen P., Treilleux M., Mélinon P., et al., Quantum-dot systems prepared by 2D organization of nanoclusters preformed in the gas phase on functionalized substrates, New J. Phys., 2002, 4, 76. Search in Google Scholar

[43] Prével B., Benoit J.M., Bardotti L., Mélinon P., Ouerghi A., Lucot D., et al., Nanostructuring graphene on SiC by focused ion beam: effect of the ion fluence, Appl. Phys. Lett., 2011, 99, 083116. Search in Google Scholar

[44] Carleson, Routh, Kelley, Young, 3D-IC Metrology Workshop, San Francisco CA USA July 11, 2012 www.sematech.org/meetings/ archives/ Search in Google Scholar

[45] Biance A.L., Gierak J., Bourhis E., Madouri A., Lafosse X., Patriarche G., et al., Focused ion beam sculpted membranes for nanoscience tooling, Microelectron. Eng., 2006, 83, 1474-1477. Search in Google Scholar

[46] Gierak J., Madouri A., Biance A.L., Bourhis E., Patriarche G., Ulysse C., et al., Sub-5 nm FIB direct patterning of nanodevices, Microelectron. Eng., 2007, 84, 779-783. Search in Google Scholar

[47] Geim A.K., Graphene: status and prospects, Science, 2009, 324, 1530–1534. Search in Google Scholar

[48] Garaj S., Hubbard W., Reina A., Kong J., Branton D., Golovchenko J.A., Graphene as a subnanometre trans-electrode membrane, Nature, 2010, 467, 190-193. Search in Google Scholar

[49] Lucot D., Gierak J., Ouerghi A., Bourhis E., Faini G., Mailly D., Deposition and FIB direct patterning of nanowires and nanorings into suspended sheets of graphene, Microelectron. Eng., 2009, 86, 882-884. Search in Google Scholar

[50] Hemamouche A., Morin A., Bourhis E., Toury B., Tarnaud E., Mathé J., et al., FIB patterning of dielectric, metallized and graphene membranes: A comparative study, Microelectron. Eng., 2014, 121, 87-91. Search in Google Scholar

[51] Li W., Liang L., Zhao S., Zhang S., Xue J., Fabrication of nanopores in a graphene sheet with heavy ions: A molecular dynamics study, J. Appl. Phys., 2013, 114, 234304; Kotakoski J., Lehtinen O.J., Nanomachining Graphene with Ion Irradiation, MRS Proceedings 1259E, 2010, 1259-S18-02. Search in Google Scholar

[52] Nguyen C.T., Balocchi A., Lagarde D., Zhang T.T., Carrère H., Mazzucato S., et al., Fabrication of an InGaAs spin filter by implantation of paramagnetic centers, Appl. Phys. Lett., 2013, 103, 052403. Search in Google Scholar

[53] McCallum J.C., Jamieson D.N., Yang C., Alves A.D., Johnson B.C., Hopf T., et al., Single-Ion Implantation for the Development of Si-Based MOSFET Devices with Quantum Functionalities, Adv. Mater. Sci. Eng., 2012, 2012, 272694. doi:10.1155/2012/272694 Search in Google Scholar

[54] Aharonovich I., Greentree A.D., Prawer S., Diamond photonics, Nature Photon., 2011, 5, 397-405.Search in Google Scholar

Received: 2014-2-13
Accepted: 2014-5-8
Published Online: 2014-6-26
Published in Print: 2014-1-1

© 2014 Jacques Gierak

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow