Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access March 2, 2018

Preparation and ion sensing property of the self-assembled microgels by QCM

Zheng Cao, Yuyuan Chen, Qianpeng Zhang, Yanping Xia, Gang Liu, Dun Wu, Wenzhong Ma, Junfeng Cheng and Chunlin Liu
From the journal Nanofabrication


The polyanion polystyrene sulfonate (PSS), the polycation poly (allylamine hydrochloride) (PAH), and the anionic poly (N-isopropylacrylamide-co-acrylic acid) [P(NIPAM-co-AA)] microgels were self-assembled onto the polyethylene imine (PEI) adsorbed gold surfaces of quartz crystal microbalance (QCM) because of the electrostatic attractions. The interactions of various metal particles including Ca2+, Bi3+, Cu2+, Zn2+, Ni2+, Sn2+, Co2+, and Cd2+ with the obtained PEI/PSS/PAH/microgel layer in aqueous solutions were evaluated by QCM. The PEI/PSS/PAH/Microgel covered QCM sensor demonstrates the lowest detection limit of 0.1 ppm in aqueous solutions and the obviously linear connection between the frequency response and Ni2+ concentration from 0.1 to 20 ppm, which is due to the complexation of Ni2+ with the carboxyl groups of microgels. Atomic force microscopy (AFM) was used to reveal the morphology and stability of the self-assembled polyelectrolyte/microgel layer before and after adsorbing heavy metal ions. These self-assembled materials of polyelectrolyte/microgel layer will be helpful for manufacturing ion-selective materials for separation and identification purposes.


[1] Saunders, B. R.; Vincent, B., Microgel particles as model colloids: theory, properties and applications. Adv. Colloid Interface Sci. 1999, 80, 1.Search in Google Scholar

[2] Lyon, L. A.; Meng, Z.; Singh, N.; Sorrell, C. D.; John, A. S., Thermoresponsive microgel-based materials Chem. Soc. Rev. 2009, 38, 865-874.10.1039/b715522kSearch in Google Scholar PubMed

[3] Ballauff, M.; Lu, Y., “Smart” nanoparticles: Preparation, characterization and applications. Polymer 2007, 48, 1815-1823.10.1016/j.polymer.2007.02.004Search in Google Scholar

[4] Tanaka, T.; Fillmore, D., Kinetics of swelling of gels J. Chem. Phys. 1979, 70, 1214-1218.Search in Google Scholar

[5] Fernandez-Nieves, A.; Fernandez-Barbero, A.; Vincent, B.; de las Nieves, F. J., Charge controlled swelling of microgel particles. Macromolecules 2000, 33, 2114-2118.Search in Google Scholar

[6] Nolan, C. M.; Serpe, M. J.; Lyon, L. A., Thermally modulated insulin release from microgel thin films Biomacromolecules 2004, 5, 1940.10.1021/bm049750hSearch in Google Scholar PubMed

[7] Senff, H.; Richtering, W., Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres. J. Chem. Phys. 1999, 111, 1705-1711.Search in Google Scholar

[8] Cao, Z.; Du, B.; Chen, T.; Nie, J.; Xu, J.; Fan, Z., Preparation and properties of thermo-sensitive organic/inorganic hybrid microgels. Langmuir 2008, 24 (22), 12771-12778.10.1021/la802087nSearch in Google Scholar PubMed

[9] Nicodemus, G. D.; Bryant, S. J., Next generation nerve guides: materials, fabrication, growth factors, and cell delivery Tissue Eng.: Part B Rev. 2008, 14, 149.10.1089/ten.teb.2007.0332Search in Google Scholar PubMed PubMed Central

[10] Ahadian, S.; Sadeghian, R. B.; Salehi, S.; Ostrovidov, S.; Bae, H.; Ramalingam, M.; Khademhosseini, A., Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjugate Chem. 2015, 26 (10), 1984-2001.Search in Google Scholar

[11] Biffis, A.; Cunial, S.; Spontoni, P.; Prati, L., Microgel-stabilized gold nanoclusters: Powerful “quasi-homogeneous” catalysts for the aerobic oxidation of alcohols in water. J. Catal. 2007, 251 (1), 1-6.Search in Google Scholar

[12] Lu, Y.; Proch, S.; Schrinner, M.; Drechsler, M.; Kempe, R.; Ballauff, M., Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J. Mater. Chem. 2009, 19 (23), 3955-3961.Search in Google Scholar

[13] Ranjha, N. M.; Mudassir, J.; Akhtar, N., Methyl methacrylateco- itaconic acid (MMA-co-IA) hydrogels for controlled drug delivery. J. Sol.-Gel Sci. Technol. 2008, 47, 23-30.Search in Google Scholar

[14] Rathna, G. V. N., Gelatin hydrogels: enhanced biocompatibility, drug release and cell viability. J. Mater. Sci.: Mater. Med. 2008, 19, 2351-2358.10.1007/s10856-007-3334-9Search in Google Scholar PubMed

[15] Choi, W. I.; Kim, M.; Tae, G.; Kim, Y. H., Sustained release of human growth hormone from heparin-based hydrogel. Biomacromolecules 2008, 9, 1698-1704.10.1021/bm701391bSearch in Google Scholar PubMed

[16] Li, B.; Jiang, X.; Yin, J., Multi-responsive microgel of hyperbranched poly(ether amine) (hPEA-mGel) for the selective adsorption and separation of hydrophilic fluorescein dyes. J. Mater. Chem. 2012, 22 (34), 17976-17983.Search in Google Scholar

[17] Romero, M. R.; Garay, F.; Baruzzi, A. M., Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes Sens. Actuators, B 2008, 131, 590-59510.1016/j.snb.2007.12.044Search in Google Scholar

[18] Kim, J. S.; Singh, N.; Lyon, L. A., Label-free biosensing with hydrogel microlenses. Angew. Chem., Int. Ed. 2006, 45, 1446-1449Search in Google Scholar

[19] Mastour Tehrani, S.; Lu, Y.; Guerin, G.; Soleimani, M.; Pichugin, D.; Winnik, M. A., Temperature-invariant aqueous microgels as hosts for biomacromolecules. Biomacromolecules 2015, 16 (10), 3134-3144.10.1021/acs.biomac.5b00768Search in Google Scholar PubMed

[20] Fan, K.; Bradley, M.; Vincent, B.; Faul, C. F. J., Effect of chain length on the interaction between modified organic salts containing hydrocarbon chains and Poly(N-isopropylacrylamide- co-acrylic acid) microgel particles. Langmuir 2011, 27 (8), 4362-4370.10.1021/la104411jSearch in Google Scholar PubMed

[21] Yin, J.; Guan, X.; Wang, D.; Liu, S., Metal-chelating and dansyllabeled Poly(N-isopropylacrylamide) microgels as fluorescent Cu2+ sensors with thermo-enhanced detection sensitivity. Langmuir 2009, 25 (19), 11367-11374.10.1021/la901377hSearch in Google Scholar PubMed

[22] Yi, X.; Xu, Z.; Liu, Y.; Guo, X.; Ou, M.; Xu, X., Highly efficient removal of uranium(vi) from wastewater by polyacrylic acid hydrogels. RSC Advances 2017, 7 (11), 6278-6287.10.1039/C6RA26846CSearch in Google Scholar

[23] Zhou, X.; Nie, J.; Du, B., 4-(2-Pyridylazo)-resorcinol functionalized thermosensitive ionic microgels for optical detection of heavy metal ions at nanomolar level. ACS Appl. Mater. Interfaces 2015, 7 (39), 21966-21974.10.1021/acsami.5b06653Search in Google Scholar PubMed

[24] Chen, H.; Dai, L. L., Adsorption and release of active species into and from multifunctional ionic microgel particles. Langmuir 2013, 29 (36), 11227-11235.10.1021/la401297bSearch in Google Scholar PubMed

[25] Cea, P.; Ballesteros Luz, M.; Martin, S., Nanofabrication techniques of highly organized monolayers sandwiched between two electrodes for molecular electronics. Nanofabrication 2014, 1 (1), 96-117.10.2478/nanofab-2014-0010Search in Google Scholar

[26] Vafai, N.; Lowry Troy, W.; Wilson Korey, A.; Davidson Michael, W.; Lenhert, S., Evaporative edge lithography of a liposomal drug microarray for cell migration assays. Nanofabrication 2015, 2 (1), 32-42.10.1515/nanofab-2015-0004Search in Google Scholar PubMed PubMed Central

[27] Serpe, M. J.; Jones, C. D.; Lyon, L. A., Layer-by-Layer deposition of thermoresponsive microgel thin films. Langmuir 2003, 19 (21), 8759-8764.10.1021/la034391hSearch in Google Scholar

[28] Clarke, K. C.; Lyon, L. A., Modulation of the deswelling temperature of thermoresponsive microgel films. Langmuir 2013, 29 (41), 12852-12857.10.1021/la403280sSearch in Google Scholar PubMed

[29] Seeber, M.; Zdyrko, B.; Burtovvy, R.; Andrukh, T.; Tsai, C.-C.; Owens, J. R.; Kornev, K. G.; Luzinov, I., Surface grafting of thermoresponsive microgel nanoparticles. Soft Matter 2011, 7 (21), 9962-9971.10.1039/c1sm05924fSearch in Google Scholar

[30] Spears, M. W.; Herman, E. S.; Gaulding, J. C.; Lyon, L. A., Dynamic materials from microgel multilayers. Langmuir 2014, 30 (22), 6314-6323.10.1021/la403058tSearch in Google Scholar PubMed

[31] Serpe, M. J.; Yarmey, K. A.; Nolan, C. M.; Lyon, L. A., Doxorubicin uptake and release from microgel thin films. Biomacromolecules 2005, 6 (1), 408-413.10.1021/bm049455xSearch in Google Scholar PubMed

[32] Islam, M. R.; Xie, S.; Huang, D.; Smyth, K.; Serpe, M. J., Poly (N-Isopropylacrylamide) microgel-based optical devices for humidity sensing. Anal. Chim. Acta 2015, 898, 101-108.Search in Google Scholar

[33] Gao, Y.; Li, X.; Serpe, M. J., Stimuli-responsive microgelbased etalons for optical sensing. RSC Advances 2015, 5 (55), 44074-44087.10.1039/C5RA02306HSearch in Google Scholar

[34] Islam, M.; Ahiabu, A.; Li, X.; Serpe, M., Poly (N-isopropylacrylamide) microgel-based optical devices for sensing and biosensing. Sensors 2014, 14 (5), 8984-8995.10.3390/s140508984Search in Google Scholar PubMed PubMed Central

[35] Johnson, K. C. C.; Mendez, F.; Serpe, M. J., Detecting solution pH changes using poly (N-isopropylacrylamide)-co-acrylic acid microgel-based etalon modified quartz crystal microbalances. Anal. Chim. Acta 2012, 739, 83-88.Search in Google Scholar

[36] Wang, L.; Wang, X.; Xu, M.; Chen, D.; Sun, J., Layer-by-Layer assembled microgel films with high loading capacity: reversible loading and release of dyes and nanoparticles. Langmuir 2008, 24 (5), 1902-1909.10.1021/la7031048Search in Google Scholar PubMed

[37] Wang, X.; Zhang, L.; Wang, L.; Sun, J.; Shen, J., Layer-by-Layer assembled polyampholyte microgel films for simultaneous release of anionic and cationic molecules. Langmuir 2010, 26 (11), 8187-8194.10.1021/la904558hSearch in Google Scholar PubMed

[38] Islam, M. R.; Serpe, M. J., Penetration of polyelectrolytes into charged Poly(N-isopropylacrylamide) microgel layers confined between two surfaces. Macromolecules 2013, 46 (4), 1599-1606.10.1021/ma302637nSearch in Google Scholar

[39] Sigolaeva, L. V.; Gladyr, S. Y.; Gelissen, A. P. H.; Mergel, O.; Pergushov, D. V.; Kurochkin, I. N.; Plamper, F. A.; Richtering, W., Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications. Biomacromolecules 2014, 15 (10), 3735-3745.10.1021/bm5010349Search in Google Scholar PubMed

[40] Nystrom, L.; Nordstrom, R.; Bramhill, J.; Saunders, B. R.; Alvarez-Asencio, R.; Rutland, M. W.; Malmsten, M., Factors affecting peptide interactions with surface-bound microgels. Biomacromolecules 2016, 17 (2), 669-678.10.1021/acs.biomac.5b01616Search in Google Scholar PubMed

[41] Wang, X.; Liu, G.; Zhang, G., Conformational behavior of grafted weak polyelectrolyte chains: effects of counterion condensation and nonelectrostatic anion adsorption. Langmuir 2011, 27 (16), 9895-9901.10.1021/la201057hSearch in Google Scholar PubMed

[42] Hook, F.; Kasemo, B.; Nylander, T.; Fant, C.; Sott, K.; Elwing, H., Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-Linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem. 2001, 73 (24), 5796-5804.10.1021/ac0106501Search in Google Scholar PubMed

[43] Wu, Y.; Ma, H.; Gu, D.; He, J. a., A quartz crystal microbalance as a tool for biomolecular interaction studies. RSC Advances 2015, 5 (79), 64520-64525.10.1039/C5RA05549KSearch in Google Scholar

[44] Cao, Z.; Tsoufis, T.; Svaldo-Lanero, T.; Duwez, A.-S.; Rudolf, P.; Loos, K., The dynamics of complex formation between amylose brushes on gold and fatty acids by QCM-D. Biomacromolecules 2013, 14 (10), 3713-3722.10.1021/bm4010904Search in Google Scholar PubMed

[45] Cao, Z.; Du, B.; Chen, T.; Li, H.; Xu, J.; Fan, Z., Fabrication and properties of thermosensitive organic/inorganic hybrid hydrogel thin films. Langmuir 2008, 24 (10), 5543-5551.10.1021/la8000653Search in Google Scholar PubMed

[46] Du, B.; Johannsmann, D., Operation of the quartz crystal microbalance in liquids: derivation of the elastic compliance of a film from the ratio of bandwidth shift and frequency shift. Langmuir 2004, 20 (7), 2809-2812.10.1021/la035965lSearch in Google Scholar PubMed

[47] Cao, Z.; Guo, J.; Fan, X.; Xu, J.; Fan, Z.; Du, B., Detection of heavy metal ions in aqueous solution by P(MBTVBC-co-VIM)-coated QCM sensor. Sens. Actuators, B 2011, 157 (1), 34-41.10.1016/j.snb.2011.03.023Search in Google Scholar

[48] Shen, L.; Chaudouet, P.; Ji, J.; Picart, C., pH-amplified multilayer films based on hyaluronan: influence of HA molecular weight and concentration on film growth and stability. Biomacromolecules 2011, 12 (4), 1322-1331.10.1021/bm200070kSearch in Google Scholar PubMed

[49] Morris, G. E.; Vincent, B.; Snowden, M. J., Adsorption of lead ions onto N-isopropylacrylamide and acrylic acid copolymer microgels. J. Colloid Interface Sci. 1997, 190 (1), 198-205.Search in Google Scholar

Received: 2017-11-28
Accepted: 2018-1-4
Published Online: 2018-3-2

© 2018

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Scroll Up Arrow