Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access September 20, 2017

Nanofabrication strategies for advanced electrode materials

  • Kunfeng Chen and Dongfeng Xue EMAIL logo
From the journal Nanofabrication


The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.


[1] Ghidiu M., Lukatskaya M. R., Zhao M. Q., Gogotsi Y., Barsoum M. W., Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516, 78-81.10.1038/nature13970Search in Google Scholar PubMed

[2] Liu X., Huang J., Zhang Q., Mai L., Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater., 2017, DOI: 10.1002/adma.201601759.10.1002/adma.201601759Search in Google Scholar PubMed

[3] Simon P., Gogotsi Y., Dunn B., Where do batteries end and supercapacitors begin.Science. 2014, 343, 1210-1211.Search in Google Scholar

[4] Hercule K. M., Wei Q., Asare O. K., Qu L., Khan A. M., Yan M., Mai L., Interconnected nanorods-nanoflakes Li2Co2(MoO4)3 framework structure with enhanced electrochemical properties for supercapacitors. Adv. Energy Mater., 2015, 5, 1500060.10.1002/aenm.201500060Search in Google Scholar

[5] Jia H., Lin J., Liu Y., Chen S., Cai Y., Lei J., Feng J., Fei W., Nanosized core-shell structured graphene-MnO2 nanosheet arrays as stable electrodes for superior supercapacitors. J. Mater. Chem. A, 2017, DOI: 10.1039/C7TA02627g.10.1039/702627gSearch in Google Scholar

[6] Huang G. M., Zhao X. L., Li F., Zhang L. L., Zhang Y. X., Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J. Power Sources, 2015, 277, 36-43.10.1016/j.jpowsour.2014.12.005Search in Google Scholar

[7] Sun H., Mei L., Liang J., Zhao Z., Lee C., Fei H., Ding M., Lau J., Li M., Wang C., Xu X., HSao G., Papandrea B., Shakir I., Dunn B., Huang Y., Duan X., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356, 599-604.10.1126/science.aam5852Search in Google Scholar PubMed

[8] Lu C., Wang D., Zhao J., Han S., Chen W., A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors. Adv. Funct. Mater., 2017, 27, 1606219.10.1002/adfm.201606219Search in Google Scholar

[9] Stauber T., Kohler H., Quasi-flat plasmonic bands in twisted bilayer graphene. Nano Lett., 2016, 16, 6844.10.1021/acs.nanolett.6b02587Search in Google Scholar PubMed

[10] Raji A., Salvatierra R., Kim N., Fan X., Li Y., Silva G., Sha J., Tour J., Lithium batteries with nearly maximum metal storage. ACS Nano, 2017, DOI: 10.1021/acsnano.7b02731.10.1021/acsnano.7b02731Search in Google Scholar PubMed

[11] Liu Y, Wang Z., Zhong Y., Tade M., Zhou W., Shao Z., Molecular design of mesoporous NiCo2O4 and NiCo2S4 with sub-micrometerpolyhedron architectures for efficient pseudocapacitive energy storage. Adv. Funct. Mater., 2017, DOI: 10.1002/adfm.201701229.10.1002/adfm.201701229Search in Google Scholar

[12] Durham J., Poyraz A., Takeuchi E., Marschilok A., Takeuchi K., Impact of multifunctional bimetallic materials on lithium battery electrochemistry. Acc. Chem. Res., 2016, 49, 1864-1872.10.1021/acs.accounts.6b00318Search in Google Scholar PubMed

[13] Kundu D., Adams B., Duffort V., Vajargah S., Nazar L., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy, 2016, 1, 16119.10.1038/nenergy.2016.119Search in Google Scholar

[14] Chen K., Xue D., Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A, 2016, 4, 7522-7537.10.1039/C6TA01527ASearch in Google Scholar

[15] Chen K., Song S., Xue D., Beyond graphene: materials chemistry toward high performance inorganic functional materials. J. Mater. Chem. A, 2015, 3, 2441-2453.10.1039/C4TA06989GSearch in Google Scholar

[16] Chen K., Li G., Xue D., Architecture engineering of supercapacitor electrode materials. Funct. Mater. Lett., 2016, 9, 1640001.10.1142/S1793604716400014Search in Google Scholar

[17] Liu J., Xue D., Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv. Mater., 2008, 20, 2622-2627.10.1002/adma.200800208Search in Google Scholar

[18] Chen K., Xue D., Rare earth and transitional metal colloidal supercapacitors. Sci. China Tech. Sci., 2015, 58, 1768-1778.10.1007/s11431-015-5915-zSearch in Google Scholar

[19] Shang Y., Shao Y., Zhang D., et al., Recrystallization-induced self-assembly for the growth of Cu2O superstructures. Angew. Chem. Int. Ed., 2014, 53, 11514-11518.10.1002/anie.201406331Search in Google Scholar PubMed

[20] Yao K. X., Yin X. M., Wang T. H., et al., Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc., 2010, 132, 6131-6144.10.1021/ja100151fSearch in Google Scholar PubMed

[21] Xu J., Xue D., Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals. Acta Mater., 2007, 55, 2397-2406.10.1016/j.actamat.2006.11.032Search in Google Scholar

[22] Chen K., Song S., Xue D. Faceted Cu2O structures with enhancing Li-ion battery anode performances. CrystEngComm, 2015, 17, 2110-2117.10.1039/C4CE02340DSearch in Google Scholar

[23] Chen K., Sun C., Xue D., Morphology engineering of high performance binary oxide electrodes. Phys. Chem. Chem. Phys., 2015, 17, 732-750.10.1039/C4CP03888FSearch in Google Scholar PubMed

[24] Chen K., Xue D., Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials. J. Phys. Chem. C, 2013, 117, 22576-22583.10.1021/jp4081756Search in Google Scholar

[25] Chen K., Xue D., A chemical reaction controlled mechanochemical route to construction of CuO nanoribbons for high performance lithium-ion batteries. Phys. Chem. Chem. Phys., 2013, 15, 19708-19714.10.1039/c3cp53787kSearch in Google Scholar PubMed

[26] Chen K., Chemical reaction controlled synthesis of copper compounds and their materials performances, PhD thesis, Dalian University of Technology, Dalian, China, 2014.Search in Google Scholar

[27] Zhao X., Bao Z., Sun C., Xue D., Polymorphology formation of Cu2O: a microscopic understanding of single crystal growth from both thermodynamic and kinetic models. J. Cryst. Growth, 2009, 311, 711-715.10.1016/j.jcrysgro.2008.09.081Search in Google Scholar

[28] Xue D., Li K., Liu J., Sun C., Chen K., Crystallization and functionality of inorganic materials. Mater. Res. Bull., 2012, 47, 2838-2842.10.1016/j.materresbull.2012.04.112Search in Google Scholar

[29] Leng M., Liu M., Zhang Y., et al., Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc., 2010, 132, 17084-17087.10.1021/ja106788xSearch in Google Scholar PubMed

[30] Chen K., Song S., Xue D., Hopper-like framework growth evolution in a cubic system: a case study of Cu2O. J. Appl. Crystallogr., 2013, 46, 1603-1609.10.1107/S0021889813022322Search in Google Scholar

[31] Chen K., Xue D., pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra. CrystEngComm, 2012, 14, 8068-8075.10.1039/c2ce26084kSearch in Google Scholar

[32] Chen K., Xue D., Chemoaffinity-mediated crystallization of Cu2O: a reaction effect on crystal growth and anode property. CrystEngComm, 2013, 15, 1739-1746.10.1039/c2ce26500aSearch in Google Scholar

[33] Chen K., Song S., Xue D., Chemical reaction controlled synthesis of Cu2O hollow octahedra and core-shell structures. CrystEngComm, 2013, 15, 10028-10033.10.1039/c3ce41745jSearch in Google Scholar

[34] Chen K., Sun C., Song S., et al. Polymorphic crystallization of Cu2O compound. CrystEngComm, 2014, 16, 5257-5267.10.1039/C4CE00339JSearch in Google Scholar

[35] Chen K., Liu F., Xue D., et al. Beyond theoretical capacity in Cu-based integrated anode: insight into the structural evolution of CuO. J. Power Sources, 2015, 275, 136-143.10.1016/j.jpowsour.2014.11.002Search in Google Scholar

[36] Chen K., Xue D., Ex-situ identification of Cu+ long-range diffusion path of Cu-based anode for lithium ion battery. Phys. Chem. Chem. Phys., 2014, 16, 11168-11172.10.1039/c4cp00811aSearch in Google Scholar PubMed

[37] Chen K., Song S., Xue D., Vapor-phase crystallization route to oxidized Cu foils in air as anode materials for lithium-ion batteries. CrystEngComm, 2013, 15, 144-151.10.1039/C2CE26544CSearch in Google Scholar

[38] Park J. C., Kim J., Kwon H., et al., Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater., 2009, 21, 803-807.10.1002/adma.200800596Search in Google Scholar

[39] Ke F., Huang L., Wei G., et al., One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta, 2009, 54, 5825-5829.10.1016/j.electacta.2009.05.038Search in Google Scholar

[40] Huang H., Yu Q., Ye Y., et al., Thin copper oxide nanowires/ carbon nanotubes interpenetrating networks for lithium ion batteries. CrystEngComm, 2012, 14, 7294-7300.10.1039/c2ce25873kSearch in Google Scholar

[41] Ko S., Lee J., Yang H., et al., Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater., 2012, 24, 4451-4456.10.1002/adma.201201821Search in Google Scholar PubMed

[42] Xiang J. Y., Tu J. P., Zhang L., et al., Self-assembled synthesis of hierarchical nanostructured cuo with various morphologies and their application as anodes for lithium ion batteries. J. Power Sources, 2010, 19, 313-319.10.1016/j.jpowsour.2009.07.022Search in Google Scholar

[43] Zhang W., Li M., Wang Q., et al., Hierarchical self-assembly of microscale cog-like superstructures for enhanced performance in lithium-ion batteries. Adv. Funct. Mater., 2011, 21, 3516-3523.10.1002/adfm.201101088Search in Google Scholar

[44] Chen L. B., Lu N., Xu C. M., et al., Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim. Acta, 2009, 54, 4198-4201.10.1016/j.electacta.2009.02.065Search in Google Scholar

[45] Choi C. S., Park Y., Kim H., et al., Three-dimensional sponge-like architectured cupric oxides as high-power and long-life anode material for lithium rechargeable batteries. Electrochim. Acta, 2012, 70, 98-104.10.1016/j.electacta.2012.03.037Search in Google Scholar

[46] Chen X., Zhang N., Sun K., Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage. J. Mater. Chem., 2012, 22, 15080-15084.10.1039/c2jm32183aSearch in Google Scholar

[47] Wang L., Cheng W., Gong H., et al., Facile synthesis of nanocrystalline- assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem., 2012, 11297-11302.10.1039/c2jm31023fSearch in Google Scholar

[48] Kitchaev D. A., Dacek S. T., Sun W., Ceder G., Thermodynamics of phase selection in MnO2 framework structures through alkali intercalation and hydration. J. Am. Chem. Soc. 2017, 139, 2672−2681.Search in Google Scholar

[49] Yuan Y., Nie A., Odegard G. M., Xu R., Zhou D., Santhanagopalan S., He K., Asayesh-Ardakani H., Meng D. D., Klie R. F., Johnson C., Lu J., Shahbazian-Yassar R. Asynchronous crystal cell expansion during lithiation of K+-stabilized α-MnO2. Nano Lett., 2015, 15, 2998-3007.10.1021/nl5048913Search in Google Scholar PubMed

[50] Wei W., Cui X., Chen W., Ivey D. G., Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev., 2011, 40, 1697-1721.10.1039/C0CS00127ASearch in Google Scholar PubMed

[51] Zhang Y., Sun C., Lu P., Li K., Song S. Xue D., Crystallization design of MnO2 towards better supercapacitance. CrystEngComm, 2012, 14, 5892-5897.10.1039/c2ce25610jSearch in Google Scholar

[52] Zhang Y., Xue D., Mild synthesis route to nanostructured α-MnO2 as electrode materials for electrochemical energy storage. Funct. Mater. Lett., 2012, 5, 1250030.10.1142/S1793604712500300Search in Google Scholar

[53] Sun C., Zhang Y., Song S. Xue D., Tunnel-dependent supercapacitance of MnO2: effects of crystal structure. J. Appl. Crystallogr., 2013, 46, 1128-1135.10.1107/S0021889813015999Search in Google Scholar

[54] Li L., Guo Z., Du A., Liu H., Rapid microwave-assisted synthesis of Mn3O4−graphene nanocomposite and its lithium storage properties. J. Mater. Chem., 2012, 22, 3600−3605.10.1039/c2jm15075aSearch in Google Scholar

[55] Chen K., Noh Y., Li K., et al., Microwave-hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage. J. Phys. Chem. C, 2013, 117, 10770-10779.10.1021/jp4018025Search in Google Scholar

[56] Huang S., Wilson B. E., Wang B., Fang Y., Buffington K., Stein A., Truhlar D. G., Y-doped Li8ZrO6: A Li-ion battery cathode material with high capacity. J. Am. Chem. Soc., 2015, 137, 10992−11003.10.1021/jacs.5b04690Search in Google Scholar PubMed

[57] Zhu J., Liu G., Liu Z., Chu Z., Jin W., Xu N., Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation. Adv. Mater., 2016, 28, 3511−3515.10.1002/adma.201505959Search in Google Scholar PubMed

[58] Chen K., Pan W., Xue D., Phase transformation of Ce3+-doped MnO2 for pseudocapacitive electrode materials. J. Phys. Chem. C, 2016, 120, 20077-20081.10.1021/acs.jpcc.6b07708Search in Google Scholar

[59] Wang H., Zhang J., Hang X., Zhang X., Xie J., Pan B., Xie Y., Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew. Chem. Int. Ed., 2015, 54, 1195-1199.10.1002/anie.201410031Search in Google Scholar PubMed

[60] Zhang P., Yuan J., Fellinger T., Antonietti M., Li H., Wang Y., Improving hydrothermal carbonization by using poly(ionic liquid) s. Angew. Chem. Int. Ed., 2013, 52, 6028-6032.10.1002/anie.201301069Search in Google Scholar PubMed

[61] Li F., Ran J., Jaroniec M., Qiao S. Z., Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7, 17590-17610.10.1039/C5NR05299HSearch in Google Scholar

[62] Rajeshwar K., Tacconi N. R., Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. Chem. Soc. Rev., 2009, 38, 1984-1998.10.1039/b811238jSearch in Google Scholar PubMed

[63] Koirala R., Pratsinis S. E., Baiker, A. synthesis of catalytic materials in flames: opportunities and challenges. Chem. Soc. Rev., 2016, 45, 3053-3068.10.1039/C5CS00011DSearch in Google Scholar

[64] Chen K., Xue D., Crystallization of transition metal oxides within 12 seconds. CrystEngComm, 2017, 19, 1230-1238.10.1039/C6CE02462ASearch in Google Scholar

[65] Liu F., Song S., Xue D., Zhang, H., Folded structured graphene paper for high performance electrode materials. Adv. Mater., 2012, 24, 1089-1094.10.1002/adma.201104691Search in Google Scholar PubMed

[66] Zhang Y., Chen P., Gao X., Wang B., Liu H., Wu H., Liu H., Dou S., Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3d porous electrodes for fast and durable lithium storage. Adv. Funct. Mater., 2016, 26, 7754-7765.10.1002/adfm.201603716Search in Google Scholar

[67] Chen K., Song S., Liu F., Xue D., Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 2015, 44, 6230-6257.Search in Google Scholar

[68] Shih C. J., Vijayaraghavan, A., Krishnan R., Sharma R., Han J. H., Ham M. H., Jin Z., Lin S. C., Paulus G. L. C., Reuel N. F., Wang Q. H., Blankschtein D., Strano M. S., Bi- and Trilayer Graphene Solutions. Nature Nanotechnol., 2011, 6, 439-445.10.1038/nnano.2011.94Search in Google Scholar PubMed

[69] Lee Y., Bae S., Jang H., Jang S., Zhu S. E., Sim S. H., Song Y. I., Hong B. H., Ahn J. H., Wafer-scale synthesis and transfer of graphene films. Nano Lett., 2010, 10, 490-493.10.1021/nl903272nSearch in Google Scholar PubMed

[70] Parvez K., Wu Z., Li R., Liu X., Graf, R., Feng, X., Mullen, K., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc., 2014, 136, 6083-6091.10.1021/ja5017156Search in Google Scholar PubMed

[71] Chen K., Xue D. Preparation of colloidal graphene in quantity by electrochemical exfoliation. J. Colloid Interface Sci., 2014, 436, 41-46.10.1016/j.jcis.2014.08.057Search in Google Scholar PubMed

[72] Chen K., Xue D., Komarneni S., Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode. J, Colloid Interface Sci., 2017, 487, 156-161.10.1016/j.jcis.2016.10.028Search in Google Scholar PubMed

[73] Wang H., Bai Y., Wu Q., Zhou W., Zhang H., Li J., Guo L., Rutile TiO2 Nano-branched Arrays on FTO for Dye-sensitized Solar Cells, Phys. Chem. Chem. Phys., 2011, 13, 7008.Search in Google Scholar

[74] Tu X., Luo S., Chen G., Li J., One-pot Synthesis, Characterization, and Enhanced Photocatalytic Activity of the BiOBr-Graphene Composites, Chem. Eur. J., 2012, 18, 14359-14366.10.1002/chem.201200892Search in Google Scholar PubMed

[75] Lu X. B., Zhou J., Zhao Y. H., Qiu Y., Li J., Room temperature ionic liquid based polystyrene nanofibers with superhydrophobility and conductivity produced by electrospinning, Chem. Mater., 2008, 20, 3420-3424.10.1021/cm800045hSearch in Google Scholar

[76] Long X., Wang Z., Xiao S., An Y., Yang S., Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today, 2016, 19, 213-226.10.1016/j.mattod.2015.10.006Search in Google Scholar

[77] Zhao J., Chen J., Xu S., Shao M., Yan D., Wei M., Evans D. G., Duan X., CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J. Mater. Chem. A, 2013, 1, 8836-8843.10.1039/c3ta11452jSearch in Google Scholar

[78] Li Y., Zhang L., Xiang X., Yan D., Li F., Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J. Mater. Chem. A, 2014, 2, 13250-13258.10.1039/C4TA01275ESearch in Google Scholar

[79] Huynh M., Shi C., Billinge S., Nocera D., Nature of activated manganese oxide for oxygen evolution. J. Am. Chem. Soc., 2015, 137, 14887-14904.10.1021/jacs.5b06382Search in Google Scholar PubMed

[80] Tao F., Dag S., Wang L., Liu Z., Butcher D. R., Bluhm H., Salmeron M., Somorjai G. A., Break-up of stepped platinum catalyst surfaces by high Co coverage. Science, 2010, 327, 850−863.10.1126/science.1182122Search in Google Scholar PubMed

[81] Wang F., Robert R., Chernova N. A., Pereira N., Omenya F. , Badway F. , Hua X., Ruotolo M., Zhang R., Wu L., Volkov V., Su D., Key B., Whittingham M. S., Grey C. P., Amatucci G. G., Zhu Y., Graetz J., Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc., 2011, 133, 18828−18836.10.1021/ja206268aSearch in Google Scholar PubMed

[82] Chen K., Xue D., High Energy Density Hybrid supercapacitor: in-situ functionalization of vanadium-based colloidal cathode. ACS Appl. Mater. Interfaces, 2016, 8, 29522-29528.10.1021/acsami.6b10638Search in Google Scholar PubMed

[83] Chen K., Xue D., Colloidal supercapacitor electrode materials. Mater. Res. Bull., 2016, 83, 201-206.10.1016/j.materresbull.2016.06.013Search in Google Scholar

[84] Chen K., Xue D., In situ electrochemical activation of Ni-based colloids from an NiCl2 electrode and their advanced energy storage performance. Nanoscale, 2016, 8, 17090-17095.10.1039/C6NR06325JSearch in Google Scholar PubMed

[85] Chen K., Xue D., Rare earth and transitional metal colloidal supercapacitors. Sci. China Technol. Sci., 2015, 58, 1768-1778.10.1007/s11431-015-5915-zSearch in Google Scholar

[86] Chen X., Chen K., Wang H., Xue D., A colloidal pseudocapacitor: direct use of Fe(NO3)3 in electrode can lead to a high performance alkaline supercapacitor system. J. Colloid Interface Sci., 2015, 444, 49-57.10.1016/j.jcis.2014.12.026Search in Google Scholar PubMed

[87] Chen K., Xue D., Komarneni S., Colloidal pseudocapacitor: nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition. J. Power Sources, 2015, 279, 365-371.10.1016/j.jpowsour.2015.01.017Search in Google Scholar

[88] Chen K., Yin S., Xue D., Binary AxB1-x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in-situ electric field assisted coprecipitation. Nanoscale, 2015, 7, 1161-1166.10.1039/C4NR05880ASearch in Google Scholar PubMed

[89] Chen K., Xue D., Ionic supercapacitor electrode materials: a system-level design of electrode and electrolyte for transforming ions into colloids. Colloids Interface Sci. Commun., 2014, 1, 39-42.10.1016/j.colcom.2014.06.006Search in Google Scholar

[90] Chen K., Song S., Xue D., An ionic aqueous pseudocapacitor system: electroactive ions in both salt-electrode and redoxelectrolyte. RSC Adv., 2014, 4, 23338-23343.10.1039/c4ra03037kSearch in Google Scholar

[91] Chen K., Xue D., YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance. J. Colloid Interface Sc., 2014, 424, 84-89.10.1016/j.jcis.2014.03.022Search in Google Scholar PubMed

[92] Chen K., Yang Y., Li K., Ma Z., Zhou Y., Xue D., CoCl2 designed as excellent pseudocapacitor electrode materials. ACS Sustainable Chem. Eng., 2014, 2, 440−444.10.1021/sc400338cSearch in Google Scholar

[93] Chen K., Song S., Li K., Xue D., Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl2 electrodes. CrystEngComm, 2013, 15, 10367-10373.10.1039/c3ce41802bSearch in Google Scholar

Received: 2017-6-6
Accepted: 2017-8-9
Published Online: 2017-9-20

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 22.2.2024 from
Scroll to top button