Abstract
Scanning Near-Field Optical Microscopy (SNOM) has developed during recent decades into a valuable tool to optically image the surface topology of materials with super-resolution. With aperture-based SNOM systems, the resolution scales with the size of the aperture, but also limits the sensitivity of the detection and thus the application for spectroscopic techniques like Raman SNOM. In this paper we report the extension of solid immersion lens (SIL) technology to Raman SNOM. The hemispherical SIL with a tip on the bottom acts as an apertureless dielectric nanoprobe for simultaneously acquiring topographic and spectroscopic information. The SIL is placed between the sample and the microscope objective of a confocal Raman microscope. The lateral resolution in the Raman mode is validated with a cross section of a semiconductor layer system and, at approximately 180 nm, is beyond the classical diffraction limit of Abbe.
References
[1] Mansfield, S. M.; Kino, G. S., Solid immersion microscope. Applied Physics Letters 1990, 57 (24), 2615-2616. 10.1063/1.103828Search in Google Scholar
[2] Mansfield, S. M.; Studenmund, W. R.; Kino, G. S.; Osato, K., High-numerical-aperture lens system for optical storage. Optics letters 1993, 18 (4), 305-307. 10.1364/OL.18.000305Search in Google Scholar PubMed
[3] Matsuo, S.; Misawa, H., Direct measurement of laser power through a high numerical aperture oil immersion objective lens using a solid immersion lens. Review of Scientific Instruments 2002, 73 (5), 2011-2015. 10.1063/1.1470231Search in Google Scholar
[4] Milster, T. D.; Akhavan, F.; Bailey, M.; Erwin, J. K.; Felix, D. M.; Hirota, K.; Koester, S.; Shimura, K.; Zhang, Y., Super-Resolution by Combination of a Solid Immersion Lens and an Aperture. Japanese Journal of Applied Physics 2001, 40 (Part 1, No. 3B), 1778-1782. 10.1143/JJAP.40.1778Search in Google Scholar
[5] Chau, Y.-F.; Yang, T.-J.; Tsai, D. P., Near-field optics simulation of a solid immersion lens combining with a conical probe and a highly efficient solid immersion lens-probe system. Journal of Applied Physics 2004, 95 (7), 3378-3384. 10.1063/1.1650541Search in Google Scholar
[6] Ippolito, S. B.; Goldberg, B. B.; Unlu, M. S., Theoretical analysis of numerical aperture increasing lens microscopy. Journal of Applied Physics 2005, 97 (5), 053105-12. 10.1063/1.1858060Search in Google Scholar
[7] Bischoff, J.; Brunner, R., Numerical investigation of the resolution in solid immersion lens systems. Proceedings of SPIE 2000, 4099 (1), 235. 10.1117/12.405824Search in Google Scholar
[8] Milster, T. D.; Jo, J. S.; Hirota, K., Roles of Propagating and Evanescent Waves in Solid Immersion Lens Systems. Applied Optics 1999, 38 (23), 5046-5057. 10.1364/AO.38.005046Search in Google Scholar PubMed
[9] Ippolito, S. B.; Terada, H., Annular illumination and collection in solid immersion, In International Symposium for Testing and Failure Analysis ISTFA, San Jose, CA, ASM International Materials Park, Ohio: San Jose, CA, 2009; pp 60-64. 10.31399/asm.cp.istfa2009p0060Search in Google Scholar
[10] Ostertag, E.; Merz, T.; Kessler, R. W., Multimodal spatially resolved near-field scattering and absorption spectroscopy. Proceedings of SPIE 2012, 8231, 82310A-1-82310A-10. 10.1117/12.909086Search in Google Scholar
[11] Koyama, K.; Yoshita, M.; Baba, M.; Suemoto, T.; Akiyama, H., High collection efficiency in fluorescence microscopy with a solid immersion lens. Applied Physics Letters 1999, 75 (12), 1667-1669. 10.1063/1.124833Search in Google Scholar
[12] Kim, M.-S.; Scharf, T.; Brun, M.; Olivier, S.; Nicoletti, S.; Herzig, H. P., Advanced optical characterization of micro solid immersion lens. Proceedings of SPIE 2012, 8430, 84300E-1- 84300E-10. 10.1117/12.921871Search in Google Scholar
[13] Kim, M.-S.; Scharf, T.; Haq, M. T.; Nakagawa, W.; Herzig, H. P., Subwavelength-size solid immersion lens. Optics letters 2011, 36 (19), 3930. 10.1364/OL.36.003930Search in Google Scholar PubMed
[14] R. Brunner; Dobschal, H. J., Diffractive Optical Lenses in Imaging Systems–High-Resolution Microscopy and Diffractive Solid Immersion Systems. In Optical Imaging and Microscopy: Techniques and Advanced Systems, 2nd edition ed.; Török, P.; Kao, F.-J., Eds. Springer: Heidelberg, 2007; pp 45-70. Search in Google Scholar
[15] Frey, H. G.; Bolwien, C.; Brandenburg, A.; Ros, R.; Anselmetti, D., Optimized apertureless optical near-field probes with 15 nm optical resolution. Nanotechnology 2006, 17, 3105-3110. Search in Google Scholar
[16] Goldberg, B. B.; Ippolito, S. B.; Novotny, L.; Liu, Z.; Ünlü, M. S., Immersion Lens Microscopy of Photonic Nanostructures and Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics 2002, 8 (5), 1051-1059. 10.1109/JSTQE.2002.804232Search in Google Scholar
[17] Terris, B.; Mamin, H. J.; Rugar, D.; Studenmund, W.; Kino, G. S., Near-field optical data storage using a solid immersion lens. Applied Physics Letters 1994, 65 (4), 388-390. 10.1063/1.112341Search in Google Scholar
[18] Daiichi, K.; Takeshi, K.; Ryuji, S.; Haruki, T.; Yoshimichi, T.; Kiyoshi, O., Near-Field Optical Recording Using Solid Immersion Lens for High-Density Flexible Optical Disks. Japanese Journal of Applied Physics 2013, 52 (9S2), 09LG01. 10.7567/JJAP.52.09LG01Search in Google Scholar
[19] Park, K.-S.; Kim, T.; Lee, W.-S.; Joe, H.-E.; Min, B.-K.; Park, Y.-P.; Yang, H.; Kang, S.-M.; Park, N.-C., Application of Solid Immersion Lens-Based Near-Field Recording Technology to High-Speed Plasmonic Nanolithography. Japanese Journal of Applied Physics 2012, 51, 08JF01-08JF07. 10.1143/JJAP.51.08JF01Search in Google Scholar
[20] Park, N.-C.; Young-Pil, P.; Park, K.-S.; Hyunseok, Y., Applications of Next Generation Optical Data Storage Technologies. IEEE Transactions on Magnetics 2011, 47 (3), 669-678. 10.1109/TMAG.2011.2112757Search in Google Scholar
[21] Ishimoto, T.; Aki, Y.; Kondo, T.; Kishima, K.; Yamamoto, K.; Yamamoto, M., Near-Field Optical Head for Disc Mastering Process. Japanese Journal of Applied Physics 2000, 39 (Part 1, No. 2B), 800-805. 10.1143/JJAP.39.800Search in Google Scholar
[22] Ippolito, S. B.; Goldberg, B. B.; Unlu, M. S., High spatial resolution subsurface microscopy. Applied Physics Letters 2001, 78 (26), 4071-4073. 10.1063/1.1381574Search in Google Scholar
[23] Dozor, D. M.; Kim, Y.; Tumidajski; Fancher, G.; Salvestrini, K.; Holt, d.; DeWitt, R. Inspection system ultilizing solid immersion lenses. Patent US020120092655A1, 2012. Search in Google Scholar
[24] Merz, T.; Kessler, R. W., Spectroscopic Imaging in the Near Field with an Apertureless Solid Immersion Lens Microscope. Proceedings of SPIE 2007, 6631, 66310V-1 - 6631V-10. 10.1364/ECBO.2007.6631_33Search in Google Scholar
[25] Wu, Q.; Ghislain, L. P.; Elings, V. B., Imaging with solid immersion lenses, spatial resolution, and applications. Proceedings of the IEEE 2000, 88 (9), 1491 - 1498. 10.1109/5.883320Search in Google Scholar
[26] Karrai, K.; Lorenz, X.; Novotny, L., Enhanced reflectivity contrast in confocal solid immersion lens microscopy. Applied Physics Letters 2000, 77 (21), 3459-3461. 10.1063/1.1326839Search in Google Scholar
[27] Wildanger, D.; Patton, B. R.; Schill, H.; Marseglia, L.; Hadden, J. P.; Knauer, S.; Schönle, A.; Rarity, J. G.; O’Brien, J. L.; Hell, S. W.; Smith, J. M., Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Ångström Emitter Localization. Advanced Materials 2012, 24 (44), OP309-OP313. 10.1002/adma.201203033Search in Google Scholar PubMed PubMed Central
[28] Ghislain, L. P.; Elings, V. B.; Crozier, K. B.; Manalis, S. R.; Minne, S. C.; Wilder, K.; Kino, G. S.; Quate, C. F., Near-field photolithography with a solid immersion lens. Applied Physics Letters 1999, 74 (4), 501-503. 10.1063/1.123168Search in Google Scholar
[29] Kino, G., Applications and theory of the solid immersion lens. Proceedings of SPIE 1999, 3609 (1), 56-65. 10.1117/12.351043Search in Google Scholar
[30] Vollmer, M.; Giessen, H.; Stolz, W.; Rühle, W. W.; Ghislain, L.; Elings, V., Ultrafast nonlinear subwavelength solid immersion spectroscopy at T=8 K. Applied Physics Letters 1999, 74 (13), 1791-1793. 10.1063/1.123087Search in Google Scholar
[31] Hartschuh, A.; Sánchez, E. J.; Xie, X. S.; Novotny, L., High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes. Physical Review Letters 2003, 90 (9), 095503. 10.1103/PhysRevLett.90.095503Search in Google Scholar PubMed
[32] Lerman, G. M.; Israel, A.; Lewis, A., Applying solid immersion near-field optics to Raman analysis of strained silicon thin films. Applied Physics Letters 2006, 89 (22), 223122. 10.1063/1.2398888Search in Google Scholar
[33] Athalin, H.; Lefrant, S., Optically addressable selective nanovolume Raman spectroscopy of nanoparticles. Journal of Nanoparticle Research 2005, 7 (1), 89-93. 10.1007/s11051-004-7773-7Search in Google Scholar
[34] Desmedt, A.; Talaga, D.; Bruneel, J. L., Enhancement of the Raman Scattering Signal Due to a Nanolens Effect. Applied Spectroscopy 2007, 61 (6), 621-623. 10.1366/000370207781269837Search in Google Scholar
[35] Poweleit, C. D.; Gunther, A.; Goodnick, S.; Menéndez, J., Raman imaging of patterned silicon using a solid immersion lens. Applied Physics Letters 1998, 73 (16), 2275-2277. 10.1063/1.121700Search in Google Scholar
[36] Brunner, R.; Burkhardt, M.; Pesch, A.; Sandfuchs, O.; Ferstl, M.; Hohng, S.; White, J. O., Diffraction-based solid immersion lens. Journal of the Optical Society of America A 2004, 21 (7), 1186-1191. 10.1364/JOSAA.21.001186Search in Google Scholar
[37] Ghislain, L. P.; Elings, V. B., Near-field scanning solid immersion microscope. Applied Physics Letters 1998, 72 (22), 2779-2781. 10.1063/1.121457Search in Google Scholar
[38] Yoshita, M.; Koyama, K.; Baba, M.; Akiyama, H., Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy. Journal of Applied Physics 2002, 92 (2), 862-865. 10.1063/1.1487442Search in Google Scholar
[39] Zayats, A.; Richards, D., Nano-Optics and Near-Field Optical Microscopy. Artech House, Inc.: Boston, 2009. Search in Google Scholar
[40] Hecht, B.; Sick, B.; Wild, U. P.; Deckert, V.; Zenobi, R.; Martin, O. J. F.; Pohl, D. W., Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. The Journal of Chemical Physics 2000, 112 (18), 7761-7774. 10.1063/1.481382Search in Google Scholar
[41] Knoll, B.; Keilmann, F., Electromagnetic fields in the cutoff regime of tapered metallics waveguides. Optics Communications 1999, 162, 177-181. 10.1016/S0030-4018(99)00094-2Search in Google Scholar
[42] Ostertag, E.; Merz, T. R.; Kessler, R. W., Imaging beyond diffraction limit - prospectives for the NIR. Proc. of the 15th International Conference on Near Infared Spectroscopy NIRS 2012 2013, 41-46. Search in Google Scholar
[43] Naturwissenschaftliches und Medizinisches Institut (NMI) an der Universität Tübingen, http://www.nmi.de. Search in Google Scholar
[44] Ghislain, L. P.; Elings, V. B. Scanning probe optical microscope using a solid immersion lens. Patent WO98/58288, 1998. Search in Google Scholar
[45] Bundesanstalt für Materialforschung, http://www. rm-certificates.bam.de/de/rm-certificates_media/rm_cert_ layer_and_surface/bam_l200e.pdf. Search in Google Scholar
[46] Blakemore, J. S., Semiconducting and other major properties of gallium arsenide. Journal of Applied Physics 1982, 53 (10), R123-R181. 10.1063/1.331665Search in Google Scholar
[47] Burns, G.; Dacol, F. H.; Wie, C. R.; Burstein, E.; Cardona, M., Phonon shifts in ion bombarded GaAs: Raman measurements. Solid State Communications 1987, 62 (7), 449-454. 10.1016/0038-1098(87)91096-9Search in Google Scholar
[48] Chang, Y.-C.; Ren, S.-F.; Wen, G., Raman spectra of GaAs-AlxGa1- xAs superlattices. Superlattices and Microstructures 1993, 13 (2), 165-168. 10.1006/spmi.1993.1030Search in Google Scholar
[49] Johnston, W. D. J.; Kaminow, I. P., Contributions to Optical Nonlinearity in GaAs as Determined from Raman Scattering Efficiencies. Physical Review 1969, 188 (3), 1209-1211. 10.1103/PhysRev.188.1209Search in Google Scholar
[50] Mooradian, A.; Wright, G. B., First order Raman effect in III-V compounds. Solid State Communications 1966, 4, 431-434. 10.1016/0038-1098(66)90321-8Search in Google Scholar
[51] Kubota, K.; Nakayama, M.; Katoh, H.; Sano, N., Characterization of GaAs-AlAs superlattices by laser Raman spectroscopy. Solid State Communications 1984, 49 (2), 157-159. 10.1016/0038-1098(84)90785-3Search in Google Scholar
[52] Sood, A. K.; Menéndez, J.; Cardona, M.; Ploog, K., Interface vibrational modes in GaAs-AlAs superlattices. Physical Review Letters 1985, 54 (19), 2115-2118. 10.1103/PhysRevLett.54.2115Search in Google Scholar PubMed
[53] Fauchet, P. M.; Campbell, I. H., Raman spectroscopy of low-dimensional semiconductors. Critical Reviews in Solid State and Materials Sciences 1988, 14 (Sup1), S79-S101. 10.1080/10408438808244783Search in Google Scholar
[54] Deutsches Institut für Normung, DIN ISO 9334:2008-08 Optics and photonics - Optical transfer function - Definitions and mathematical relationships. 2008. Search in Google Scholar
[55] Senoner, M.; Wirth, T.; Unger, W. E. S., Imaging surface analysis: Lateral resolution and its relation to contrast and noise. Journal of Analytical Atomic Spectrometry 2010, 25 (9), 1440-1452. 10.1039/c004323kSearch in Google Scholar
[56] Cox, G.; Sheppard, C. J. R., Practical limits of resolution in confocal and non-linear microscopy. Microscopy Research and Technique 2004, 63 (1), 18-22. 10.1002/jemt.10423Search in Google Scholar PubMed
[57] Sheppard, C. J. R.; Choudhury, A., Image Formation in the Scanning Microscope. Optica Acta: International Journal of Optics 1977, 24 (10), 1051-1073. 10.1080/713819421Search in Google Scholar
[58] Cox, I. J.; Sheppard, C. J. R.; Wilson, T., Super-resolution by confocal fluorescent microscopy. Optik 1982, 60 (4), 391-396. Search in Google Scholar
© 2014 Edwin Ostertag et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.