Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 19, 2015

Optical properties of silver nanocube surfaces obtained by silane immobilization

  • Virginia Merk , Alexander Nerz , Sebastian Fredrich , Ulrich Gernert , Sören Selve and Janina Kneipp
From the journal Nanospectroscopy


Silver nanocubes were synthesized by the polyol method and immobilized on a surface in a simple approach using an aminopropyltriethoxysilane (APTES). The optical and structural properties of the polyvinylpyrrolidone (PVP) stabilized nanocubes were investigated in solution and on glass surfaces. The SERS enhancement factors at two excitation wavelengths for crystal violet were compared with electric fields arising in different nano¬particle configurations using finite-difference time-domain simulations. They are in agreement with the preferred face-to-face orientation in the nanoaggregates on the surfaces. The facile immobilization enables on-demand preparation and use of the nanocubes in real analytical applications.


[1] Lee H.K., Lee Y.H., Zhang Q., Phang I.Y., Tan J.M.R., Cui Y. and Ling X.Y., Superhydrophobic Surface-Enhanced Raman Scattering Platform Fabricated by Assembly of Ag Nanocubes for Trace Molecular Sensing, Appl. Mater. Interf., 2013, 5, 11409-11418. 10.1021/am403655gSearch in Google Scholar PubMed

[2] Kodiyath R., Malak S.T., Combs Z.A., Koenig T., Mahmoud M.A., El-Sayed M.A. and Tsukruk V.V., Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection, J. Mater. Chem. A, 2013, 1, 2777-2788. 10.1039/c2ta00867jSearch in Google Scholar

[3] Liu X.-L., Liang S., Nan F., Yang Z.-J., Yu X.-F., Zhou L., Hao Z.-H. and Wang Q.-Q., Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS, Nanoscale, 2013, 5, 5368-5374. 10.1039/c3nr01170dSearch in Google Scholar PubMed

[4] Sisco P.N. and Murphy C.J., Surface-Coverage Dependence of Surface-Enhanced Raman Scattering from Gold Nanocubes on Self-Assembled Monolayers of Analyte, J. Phys. Chem. A, 2009, 113, 3973-3978. 10.1021/jp810329jSearch in Google Scholar PubMed

[5] Fievet F., Lagier J.P. and Figlarz M., Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process, MRS Bulletin, 1989, 14, 29-34. 10.1557/S0883769400060930Search in Google Scholar

[6] Sun Y. and Xia Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 2002, 298, 2176-2179. 10.1126/science.1077229Search in Google Scholar PubMed

[7] Wang Y., Zheng Y.Q., Huang C.Z. and Xia Y.N., Synthesis of Ag Nanocubes 18-32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility, J. Am. Chem. Soc., 2013, 135, 1941-1951. 10.1021/ja311503qSearch in Google Scholar PubMed PubMed Central

[8] Ringe E., McMahon J.M., Sohn K., Cobley C., Xia Y., Huang J., Schatz G.C., Marks L.D. and Van Duyne R.P., Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach, J. Phys. Chem. C, 2010, 114, 12511-12516. 10.1021/jp104366rSearch in Google Scholar

[9] McMahon J.M., Wang Y., Sherry L.J., Van Duyne R.P., Marks L.D., Gray S.K. and Schatz G.C., Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes, J. Phys. Chem. C, 2009, 113, 2731-2735. 10.1021/jp8098736Search in Google Scholar

[10] Mahmoud M.A., Tabor C.E. and El-Sayed M.A., Surface- Enhanced Raman Scattering Enhancement by Aggregated Silver Nanocube Monolayers Assembled by the Langmuir−Blodgett Technique at Different Surface Pressures, J. Phys. Chem. C, 2009, 113, 5493-5501. 10.1021/jp900648rSearch in Google Scholar

[11] Lee S.Y., Hung L., Lang G.S., Cornett J.E., Mayergoyz I.D. and Rabin O., Dispersion in the SERS Enhancement with Silver Nanocube Dimers, ACS Nano, 2010, 4, 5763-5772. 10.1021/nn101484aSearch in Google Scholar PubMed

[12] McLellan J.M., Li Z.-Y., Siekkinen A.R. and Xia Y., The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization, Nano Lett., 2007, 7, 1013-1017. 10.1021/nl070157qSearch in Google Scholar PubMed

[13] McLellan J.M., Siekkinen A., Chen J. and Xia Y., Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes, Chem. Phys. Lett., 2006, 427, 122-126. 10.1016/j.cplett.2006.05.111Search in Google Scholar

[14] Fang C., Brodoceanu D., Kraus T. and Voelcker N.H., Templated silver nanocube arrays for single-molecule SERS detection, RSC Advances, 2013, 3, 4288-4293. 10.1039/c3ra22457kSearch in Google Scholar

[15] Joseph V., Gensler M., Seifert S., Gernert U., Rabe J.P. and Kneipp J., Nanoscopic Properties and Application of Mix-and- Match Plasmonic Surfaces for Microscopic SERS, J. Phys. Chem. C, 2012, 116, 6859-6865. 10.1021/jp212527hSearch in Google Scholar

[16] Grabar K.C., Freeman R.G., Hommer M.B. and Natan M.J., Preparation and Characterization of Au Colloid Monolayers, Anal. Chem., 1995, 67, 735-743. 10.1021/ac00100a008Search in Google Scholar

[17] Chumanov G., Sokolov K., Gregory B.W. and Cotton T.M., Colloidal metal films as a substrate for surface-enhanced spectroscopy, J. Phys. Chem., 1995, 99, 9466-9471. 10.1021/j100023a025Search in Google Scholar

[18] Polwart E., Keir R.L., Davidson C.M., Smit W.E. and Sadler D.A., Novel SERS-Active Optical Fibers Prepared by the Immobilization of Silver Colloidal Particles, Appl. Spec., 2000, 54, 522-527. 10.1366/0003702001949690Search in Google Scholar

[19] Cant N.E., Critchley K., Zhang H.-L. and Evans S.D., Surface functionalisation for the self-assembly of nanoparticle/polymer multilayer films, Thin Solid Films, 2003, 426, 31-39. 10.1016/S0040-6090(02)01300-7Search in Google Scholar

[20] Kudelski A., Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: Do dye molecules adsorb preferentially on highly SERS-active sites?, Chem. Phys. Lett., 2005, 414, 271-275. 10.1016/j.cplett.2005.08.075Search in Google Scholar

[21] Johnson P.B. and Christy R.W., Optical Constants of the Noble Metals, Phys. Rev. B, 1972, 6, 4370-4379. 10.1103/PhysRevB.6.4370Search in Google Scholar

[22] Zhou F., Li Z.-Y., Liu Y. and Xia Y., Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles, J. Phys. Chem. C, 2008, 112, 20233-20240. 10.1021/jp807075fSearch in Google Scholar

[23] Zhang Q., Li W., Moran C., Zeng J., Chen J., Wen L.-P. and Xia Y., Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30−200 nm and Comparison of Their Optical Properties, J. Am. Chem. Soc., 2010, 132, 11372-11378. 10.1021/ja104931hSearch in Google Scholar PubMed PubMed Central

[24] Im S.H., Lee Y.T., Wiley B. and Xia Y., Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity, Angew. Chem. Int. Ed., 2005, 44, 2154-2157. 10.1002/anie.200462208Search in Google Scholar PubMed

[25] Wiley B.J., Im S.H., Li Z.-Y., McLellan J., Siekkinen A. and Xia Y., Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis, J. Phys. Chem. B, 2006, 110, 15666-15675. 10.1021/jp0608628Search in Google Scholar PubMed

[26] Grillet N., Manchon D., Bertorelle F., Bonnet C., Broyer M., Cottancin E., Lermé J., Hillenkamp M. and Pellarin M., Plasmon Coupling in Silver Nanocube Dimers: Resonance Splitting Induced by Edge Rounding, ACS Nano, 2011, 5, 9450-9462. 10.1021/nn2041329Search in Google Scholar PubMed

[27] Sherry L.J., Chang S.-H., Schatz G.C., Van Duyne R.P., Wiley B.J. and Xia Y., Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes, Nano Lett., 2005, 5, 2034-2038. 10.1021/nl0515753Search in Google Scholar PubMed

[28] Bottomley A., Prezgot D., Staff A. and Ianoul A., Fine tuning of plasmonic properties of monolayers of weakly interacting silver nanocubes on thin silicon films, Nanoscale, 2012, 4, 6374-6382. 10.1039/c2nr31885gSearch in Google Scholar PubMed

[29] Cañamares M.V., Chenal C., Birke R.L. and Lombardi J.R., DFT, SERS, and Single-Molecule SERS of Crystal Violet, J Phys. Chem. C, 2008, 112, 20295-20300. 10.1021/jp807807jSearch in Google Scholar

[30] Osawa M., Matsuda N., Yoshii K. and Uchida I., Charge- Transfer Resonance Raman Process in Surface-Enhanced Raman-Scattering from P-Aminothiophenol Adsorbed on Silver - Herzberg-Teller Contribution, J. Phys. Chem., 1994, 98, 12702-12707. 10.1021/j100099a038Search in Google Scholar

[31] Huang Y.-F., Wu D.-Y., Zhu H.-P., Zhao L.-B., Liu G.-K., Ren B. and Tian Z.-Q., Surface-enhanced Raman spectroscopic study of p-aminothiophenol, Phys. Chem. Chem. Phys., 2012, 14, 8485-8497. 10.1039/c2cp40558jSearch in Google Scholar PubMed

[32] Moran C.H., Rycenga M., Zhang Q. and Xia Y.N., Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering, J. Phys. Chem. C, 2011, 115, 21852-21857. 10.1021/jp207868aSearch in Google Scholar PubMed PubMed Central

[33] Joseph V., Matschulat A., Polte J., Rolf S., Emmerling F. and Kneipp J., SERS enhancement of gold nanospheres of defined size, J. Raman Spec., 2011, 42, 1736-1742. 10.1002/jrs.2939Search in Google Scholar

[34] Camargo P.H.C., Au L., Rycenga M., Li W. and Xia Y., Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes, Chem. Phys. Lett., 2010, 484, 304-308. 10.1016/j.cplett.2009.12.002Search in Google Scholar PubMed PubMed Central

[35] Hao E. and Schatz G.C., Electromagnetic fields around silver nanoparticles and dimers, J. Chem. Phys., 2004, 120, 357-366. 10.1063/1.1629280Search in Google Scholar PubMed

Received: 2014-6-26
Accepted: 2014-11-6
Published Online: 2015-1-19

© 2014 Virginia Merk et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 10.12.2023 from
Scroll to top button