Abstract
The kinetics of Li2SO4·H2O dehydration in static air atmosphere was studied on the basis of nonisothermal measurements by differential scanning calorimetry. Dehydration data were subjected to an integral composite procedure, which includes an isoconversional method, a master plots method and a model-fitting method. Avrami-Erofeev equation was found to describe all the experimental data in the range of conversion degrees from 0.1 to 0.9. The determined activation energy equals 65.45 kJ·mol−1 with standard deviation ±0.47 kJ·mol−1. The estimated value of parameter m in Avrami-Erofeev equation is 2.15 with standard deviation ±0.11. Also, the obtained pre-exponential factor is 7.79×105 s−1 with standard deviation ±0.55×105 s−1. The results show that the present integral composite procedure gives self-consistent kinetic parameters.
[1] F.J. Gotor, M. Macias, A. Ortega and J.M. Criado: “Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples”, Phys. Chem. Minerals, Vol. 27, (2000), pp. 495–503. http://dx.doi.org/10.1007/s00269000009310.1007/s002690000093Search in Google Scholar
[2] D. Peterson and J. Winnick: “A hydrogen-sulfide fuel-cell using a proton-conducting solid-electrolyte”, J. Electrochem. Soc., Vol. 143(3), (1996), pp. 55–56. http://dx.doi.org/10.1149/1.183653010.1149/1.1836530Search in Google Scholar
[3] R. Sabbah, An Xu-wu, J.S. Chickos, M.L. Planas Leitao, M.V. Roux and L.A. Torres: “Reference materials for calorimetry and differential thermal analysis”, Thermochim. Acta, Vol. 331, (1999), pp. 93–204. http://dx.doi.org/10.1016/S0040-6031(99)00009-X10.1016/S0040-6031(99)00009-XSearch in Google Scholar
[4] N.A. Simakova, N.Z. Lyakhov and N.A. Rudina: “Thermal dehydration of lithium sulfate monohydrate. The reaction reversibility and the solid product morphology”, Thermochim. Acta, Vol. 256, (1995), pp. 381–389. http://dx.doi.org/10.1016/0040-6031(94)02100-310.1016/0040-6031(94)02100-3Search in Google Scholar
[5] A.N. Modestov, P.V. Poplaukhin and N.Z. Lyakhov: “Dehydration kinetics of lithium sulfate monohydrate single crystals”, J. Therm. Anal. Cal., Vol. 65, (2001), pp. 121–130. http://dx.doi.org/10.1023/A:101157650204610.1023/A:1011576502046Search in Google Scholar
[6] B.V. Lvov and V.L. Ugolkov: “The self-cooling effect in the process of dehydration of Li2SO4·H2O, CaSO4·2H2O and CuSO4·5H2O in vacuum”, J. Therm. Anal. Cal., Vol. 74, (2003), pp. 697–708. http://dx.doi.org/10.1023/B:JTAN.0000011002.06238.9710.1023/B:JTAN.0000011002.06238.97Search in Google Scholar
[7] N. Koga and H. Tanaka: “Kinetics and mechanisms of the thermal dehydration of Li2SO4·H2O”, J. Phys. Chem., Vol. 93, (1989), pp. 7793–7798. http://dx.doi.org/10.1021/j100360a01410.1021/j100360a014Search in Google Scholar
[8] W. Kezhong, Z. Jianjun, G. Yanrui and L. Xiaodi: “Determination of nonisothermal kinetic parameters of lithium sulfate monohydrate”, Chin. J. Rare Metals, Vol. 25, (2001), pp. 389–391. Search in Google Scholar
[9] Y. Seto, H. Sato and Y. Masuda: “Effect of water vapor pressure on thermal dehydration of lithium sulfate monohydrate”, Thermochim. Acta, Vol. 388, (2002), pp. 21–25. http://dx.doi.org/10.1016/S0040-6031(02)00049-710.1016/S0040-6031(02)00049-7Search in Google Scholar
[10] Z. Jianjun, B. Jihai, Z. Xiufang, Z. Xue and W. Kezhong: “Non-isothermal kinetics of the dehydration process for lithium sulfate monohydrate in solid state”, Chin. J. Anal. Chem., Vol. 31, (2003), pp. 726–730. Search in Google Scholar
[11] G.J.T. Fernandes, A.S. Araújo, J.V.J. Fernandes and C. Novák: “Model-free kinetics applied to regeneration of coked alumina”, J. Therm. Anal. Cal., Vol. 75, (2004), pp. 687–692. http://dx.doi.org/10.1023/B:JTAN.0000027163.44593.4a10.1023/B:JTAN.0000027163.44593.4aSearch in Google Scholar
[12] P. Šimon: “Isoconversional methods. Fundamentals, meaning and application”, J. Therm. Anal. Cal., Vol. 76, (2004), pp, 123–132. http://dx.doi.org/10.1023/B:JTAN.0000027811.80036.6c10.1023/B:JTAN.0000027811.80036.6cSearch in Google Scholar
[13] F.J. Gotor, J.M. Criado, J. Malek and N. Koga: “Kinetic analysis of solid-state reactions: The universality of master plots for analyzing isothermal and nonisothermal experiments”, J. Phys. Chem. A, Vol. 104, (2000), pp. 10777–10782. http://dx.doi.org/10.1021/jp002220510.1021/jp0022205Search in Google Scholar
[14] L.A. Perez-Maqueda, J.M. Criado, F.J. Gotorand and J. Malek: “Advantages of combined kinetic analysis of experimental data obtained under any heating profile”, J. Phys. Chem. A, Vol. 106, (2002), pp. 2862–2868. http://dx.doi.org/10.1021/jp012246b10.1021/jp012246bSearch in Google Scholar
[15] V. Mamleev, S. Bourbigot, M.L. Bras, S. Duquesne and J. Sestak: “Modeling of nonisothermal kinetics in thermogravimetry”, Phys. Chem. Chem. Phys., Vol. 2, (2000), pp. 4708–4716. http://dx.doi.org/10.1039/b004355i10.1039/b004355iSearch in Google Scholar
[16] T. Wanjun, L. Yuwen, Z. Hen and W. Cunxin: “New approximate formula for Arrhenius temperature integral”, Thermochim. Acta, Vol. 408, (2003), pp. 39–43. http://dx.doi.org/10.1016/S0040-6031(03)00310-110.1016/S0040-6031(03)00310-1Search in Google Scholar
[17] H. Tanaka: “Thermal analysis and kinetics of solid state reactions”, Thermochim. Acta, Vol. 267, (1995), pp. 29–44. http://dx.doi.org/10.1016/0040-6031(95)02464-610.1016/0040-6031(95)02464-6Search in Google Scholar
[18] T. Wanjun, L. Yuwen, Z. Hen, W. Zhiyong and W. Cunxin: “New temperature integral approximate formula for nonisothermal kinetic analysis”, J. Therm. Anal. Cal., Vol. 74, (2003), pp. 309–315. http://dx.doi.org/10.1023/A:102631071052910.1023/A:1026310710529Search in Google Scholar
© 2005 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.