Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 2, 2007

Comparative study of layered tetravalent metal phosphates containing various first-row divalent metals. Synthesis, crystalline structure

László Szirtes, László Riess, János Megyeri and Ernõ Kuzmann
From the journal Open Chemistry

Abstract

The transition metal forms of α-zirconium-. titanium-, and hafnium phosphates were prepared by ion exchange method. Their structure was investigated by X-ray powder diffraction (XRPD) method. It was found that the transition metal containing phosphates have the same layered structure as the pristine tetravalent metal phosphates, except for the increase of interlayer distance from 7.6 Å to ∼9.5 Å. As a result of the incorporation of transition metals in the layers, the c-axis is increased from ∼15 Å to ∼20 Å (in the case of titanium phosphate to ∼25 Å). All other parameters (a, b and β °) are practically unchanged.

[1] I.V. Tanaev (Ed.): The Chemistry of Tetravalent Elements Phosphates, Nauka, Moscow 1972 and references therein. Search in Google Scholar

[2] M.T. Averbuch-Pouchot and A. Durif (Eds.): Topics in Phosphate Chemistry, World Sci, Singapore, 1994. Search in Google Scholar

[3] A. Clearfield and J.A. Stynes: “The preparation of crystalline zirconium phosphate and some observation on its ion exchange behaviour”, J. Inorg. Nucl. Chem., Vol. 26, (1964), pp. 117–129. http://dx.doi.org/10.1016/0022-1902(64)80238-410.1016/0022-1902(64)80238-4Search in Google Scholar

[4] A. Clearfield and G.D. Smith: “The crystallography and structure of zirconium bis(monohydrogen orthophosphate) monohydrate”, Inorg. Chem., Vol. 8, (1969), pp. 431–436. http://dx.doi.org/10.1021/ic50073a00510.1021/ic50073a005Search in Google Scholar

[5] G. Alberti and E. Torracca: “Crystalline insoluble acid salts of polyvalent metals and polybasic acids VI”, J. Inorg. Nucl. Chem., Vol. 30, (1968), pp. 3075–3080. http://dx.doi.org/10.1016/0022-1902(68)80168-X10.1016/0022-1902(68)80168-XSearch in Google Scholar

[6] L. Szirtes: Investigation on zirconium phosphate ion exchange material, Thesis (Ph.D), Moscow State University, Moscow, 1968 (in Russian). Search in Google Scholar

[7] S. Bruque, M.A.G. Aranda, E.R. Losilla, P. Olivera-Pastor and P. Maireles-Tores: “Synthesis, optimisation and crystal structures of layered metal(IV) hydrogen phosphates”, Inorg. Chem., Vol. 34, (1995), pp. 893–899. http://dx.doi.org/10.1021/ic00108a02110.1021/ic00108a021Search in Google Scholar

[8] J.M. Troup and A. Clearfield: “On the mechanism of ion exchange in zirconium phosphate 20. Refinement on the crystal structure of α-zirconium phosphate”, Inorg. Chem., Vol. 16, (1977), pp. 3311–3314. http://dx.doi.org/10.1021/ic50178a06510.1021/ic50178a065Search in Google Scholar

[9] Tomita, K. Magami, H. Watanabe, K. Suzuki and T. Nakamura: “Single-step Lithium-ion Exchange on α-Hafnium Phosphate”, Bull. Chem. Soc. Japan, Vol. 56, (1983), pp. 3183–3186. http://dx.doi.org/10.1246/bcsj.56.318310.1246/bcsj.56.3183Search in Google Scholar

[10] L. Szirtes: “Progress in chemistry of inorganic ion exchangers”, Thesis (D.Sc.), Hungarian Academy of Sciences Budapest, 1987 (in Hungarian). Search in Google Scholar

[11] A. Clearfield (Ed.): Inorganic Ion Exchange Materials CRC Press, Boca Raton, FL, 1982, Chp. 1, pp. 30,35 and references therein. Search in Google Scholar

[12] A. Clearfield: Progress in Intercalation Research, Kluwer Dordrecht, 1994, p. 223. 10.1007/978-94-011-0890-4_4Search in Google Scholar

[13] G. Alberti, C. Dionigi, S. Murcia-Mascaros and R. Vivani, In: G. Tsoucaris (Ed.): Crystallography of Supramolecular Compounds, Kluwer Dordrecht, 1996, p. 143. Search in Google Scholar

[14] A. Clearfield and U. Costantino: “Layered Metal Phosphates and Their Intercalation Chemistry”, In: G. Alberti and T. Bein (Eds.): Comprehensive Supramolecular Chemistry, Pergamon Press, N.Y., 1996. Search in Google Scholar

[15] G.C. Hadjipanayis and R.W. Siegel (Eds): Nanophase Materials: Synthesis, Properties, Applications Kluwer Dordrecht, 1994, references therein. 10.1007/978-94-011-1076-1Search in Google Scholar

[16] G. Alberti, S. Cavalaglio, F. Marmottini, K. Matusek, J. Megyeri and L. Szirtes: “Preparation of a composite γ-zirconium phosphate-silica with large specific surface and its first characterisation as acid catalyst”, Appl. Catal. A: General, Vol. 218, (2001), pp. 219–228. http://dx.doi.org/10.1016/S0926-860X(01)00648-210.1016/S0926-860X(01)00648-2Search in Google Scholar

[17] V. Brandel and N. Dacheux: “Chemistry of tetravalent actinide phosphate part I”, J. Solid State Chem., Vol. 177, (2004), pp. 4743–4754. http://dx.doi.org/10.1016/j.jssc.2004.08.00910.1016/j.jssc.2004.08.009Search in Google Scholar

[18] S.K. Shakshooki, N. Naqvi, J. Kowalczyk, S. Khalil, M. Rais and F. Tarish: “Mixed insoluble acid salts of tetravalent metals II”, React. Polym., Vol. 7, (1988), pp. 221–226. Search in Google Scholar

[19] S.K. Shakshooki Y. Elmismari, A. Dehair and L. Szirtes: “Mixed acid salts of tetravalent metals IX”, J. Radioanal. Nucl. Chem. Art., Vol. 158, (1992), pp. 3–12. http://dx.doi.org/10.1007/BF0203476710.1007/BF02034767Search in Google Scholar

[20] S.K. Shakshooki, N. Naqvi, S. Khalil, M. Mostaq and L. Szirtes: “Mixed acid salts of tetravalent metals VI”, J. Radioanal. Nucl. Chem. Art., Vol. 121(1), (1988), pp. 195–201. http://dx.doi.org/10.1007/BF0204146110.1007/BF02041461Search in Google Scholar

[21] S.K. Shakshooki, F. Masaodi, A. Dehair, J. Kowalczyk and L. Szirtes: “Mixed acid salts of tetravalent metals VIII”, J. Radioanal. Nucl. Chem. Art., Vol. 132(2), (1989), pp. 251–260. http://dx.doi.org/10.1007/BF0213608410.1007/BF02136084Search in Google Scholar

[22] M. Suárez, L.M. Barcina, R. Llavona and J. Rodriguez: “Layered hafnium phosphates. Synthesis, characterisation, crystalline structure and intercalation behaviour”, J. Mol. Struct., Vol. 470, (1998), pp. 105–119. http://dx.doi.org/10.1016/S0022-2860(98)00474-810.1016/S0022-2860(98)00474-8Search in Google Scholar

[23] L. Szirtes, J. Megyeri, L. Riess and E. Kuzmann: “Thermal decomposition of hafnium phosphate and related materials”, J. Therm. Anal. Cal., Vol. 65, (2001), pp. 975–981. http://dx.doi.org/10.1023/A:101191732460610.1023/A:1011917324606Search in Google Scholar

[24] R.B. Sandell (Ed): Colorimetric Determination of Traces of Metals, Intersci. Publ. Inc., N.Y., 1959, pp. 426,453, 610, 674,870, 941, 966. Search in Google Scholar

[25] Z. Klencsár: EXRAY, peak searching computer software, Personal communication, 1998. Search in Google Scholar

[26] H.M. Rietveld: “Profile refinement method for nuclear and magnetic structures”, J. Appl. Crystallogr., Vol. 2, (1969), pp. 65–71. http://dx.doi.org/10.1107/S002188986900655810.1107/S0021889869006558Search in Google Scholar

[27] W. Kraus and G. Nolze: Powder Cell, ver. 2.3 (software for structural simulation), 1999. Search in Google Scholar

[28] L. Szirtes. A.M. Szeleczky, A.O. Rajeh and E. Kuzmann: “Thermal behaviour of transition metal containing zirconium phosphate”, J. Therm. Anal. Cal., Vol. 56, (1999), pp. 447–451. http://dx.doi.org/10.1023/A:101018360902110.1023/A:1010183609021Search in Google Scholar

[29] L. Szirtes, L. Riess and J. Megyeri: “Thermal-analytical investigation of layered titanium salts”, J. Therm. Anal. Cal., Vol. 73, (2003), pp. 209–219. http://dx.doi.org/10.1023/A:102515001174310.1023/A:1025150011743Search in Google Scholar

[30] L. Szirtes, L. Riess and J. Megyeri: “Thermoanalytical investigation of crystalline layered hafnium salts”, J. Therm. Anal. Cal., Vol. 79, (2005), pp. 135–140. http://dx.doi.org/10.1007/s10973-004-0574-510.1007/s10973-004-0574-5Search in Google Scholar

[31] L. Zsinka and L. Szirtes: “Determination of specific surface of some synthetic ion exchangers; Measurements in gas and liquid phases”, Magy. Kém. Folyóirat, Vol. 74(6), (1968), pp. 258–260 (in Hungarian). Search in Google Scholar

[32] A. Clearfield and J.M. Kalnins: “On the mechanism of ion exchange in zirconium phosphates XIII”, J. Inorg. Nucl. Chem., Vol. 38, (1976), pp. 849–852. http://dx.doi.org/10.1016/0022-1902(76)80369-710.1016/0022-1902(76)80369-7Search in Google Scholar

[33] L. Szirtes, J. Megyeri, E. Kuzmann and Z. Klencsár: “Electrical conductivity of transition metal containing crystalline zirconium phosphate materials”, Solid State Ionics, Vol. 145, (2001), pp. 257–260. http://dx.doi.org/10.1016/S0167-2738(01)00949-310.1016/S0167-2738(01)00949-3Search in Google Scholar

[34] L. Szirtes, J. Megyeri, L. Riess and E. Kuzmann: “Electrical conductivity of transition metal containing crystalline titanium phosphate materials”, Solid State Ionics, Vol. 162–163, (2003), pp. 181–184. http://dx.doi.org/10.1016/S0167-2738(03)00225-X10.1016/S0167-2738(03)00225-XSearch in Google Scholar

[35] W. Hume-Rothery and G.V. Raynor: The Structure of Metals and Alloys, Ed. By Inst. Of Metals, London, 1954, pp. 100–103. Search in Google Scholar

Published Online: 2007-2-2
Published in Print: 2007-6-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow