Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 3, 2007

ICP slurry introduction for simple and rapid determination of Pb, Mg and Ca in plant roots

Danuta Barałkiewicz, Anetta Kanecka-Hanc and Hanka Gramowska
From the journal Open Chemistry

Abstract

Pb, Mg and Ca were simultaneously determined in plant roots by slurry introduction into inductively coupled plasma optical emission spectrometry (SS-ICP-OES). Slurries were prepared in 0.5% or 5% (v/v) HNO3 with 0.5, or 5% (v/v) Triton X-100. Omission of the Triton X-100 improved results. Compared with wet ashing of the root sample followed by ICP-OES, ICP-MS and FAAS, the method offers: comparable results, simplification of sample preparation, less sample contamination, and reduction in the use of dangerous and corrosive reagents. The precisions varied: 1.7% for Mg, 2.8% for Ca and 4.3% for Pb, and were not significantly different (95% confidence level) from those of conventional analysis.

[1] Q.Z. Bian, P. Jacob, H. Bernard and K. Niemax: “Online flow digestion of biological and environmental samples for inductively coupled plasma-optical emission spectroscopy (ICP-OES)”, Anal. Chim. Acta, Vol. 583, (2005), pp. 323–329. http://dx.doi.org/10.1016/j.aca.2005.01.07410.1016/j.aca.2005.01.074Search in Google Scholar

[2] Z. Wang, Z. Ni, D. Qiu, G. Tao and P. Yang: “Characterization of stability of ceramic suspension for slurry introduction in inductively coupled plasma optical emission spectrometry and application to aluminium nitride analysis”, J. Anal. Atom. Spectrom., Vol. 20, (2005), pp. 315–319. http://dx.doi.org/10.1039/b415632c10.1039/b415632cSearch in Google Scholar

[3] J.G. Parsons, J.L. Gardea-Torresdey, J.R. Peralta-Videa, K.J. Tiemann, E. Gomez, L. Gugliotta and M. Durate-Gardea: “A Statistical Comparison of Platinum Plant Digestion Data Obtained From GFAAS and ICP-OES”, Atom. Spectrosc., Vol. 24, (2003), pp. 89–92. Search in Google Scholar

[4] N.S. Mokgalaka, T. Wondimu and R.I. McCrindle: “Reductive separation and slurry nebulization of converter matte for ICP-OES analysis of some platinum group metals and gold”, J. Anal. Atom. Spectrom., Vol. 19, (2004), pp. 1493–1497. http://dx.doi.org/10.1039/b409055a10.1039/b409055aSearch in Google Scholar

[5] E.J. dos Santos, A.B. Herrmann, V.L.A. Frescura and A.J. Curtius: “Simultaneous determination of As, Hg, Sb, Se and Sn in sediments by slurry sampling axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation with internal standardization”, J. Anal. Atom. Spectrom., Vol. 20, (2005), pp. 538–543. http://dx.doi.org/10.1039/b502964c10.1039/b502964cSearch in Google Scholar

[6] M.S. Epstein, G.R. Carnick and W. Slavin: “Abstract-EMBASE”, Anal. Chem., Vol. 61, (1989), p. 1414. http://dx.doi.org/10.1021/ac00188a02210.1021/ac00188a022Search in Google Scholar

[7] P.J. McKinstry, H.E. Indyk and N.D. Kim: “The determination of major and minor elements in milk and infant formula by slurry nebulisation and inductively coupled plasma-optical emission spectrometry (ICP-OES)”, Food Chem., Vol. 65, (1999), pp. 245–252. http://dx.doi.org/10.1016/S0308-8146(98)00183-610.1016/S0308-8146(98)00183-6Search in Google Scholar

[8] R. Bou, F. Guardiola, A. Padro, E. Pelfort and R. Codony: “Validation of mineralization procedures for the determination of selenium, zinc, iron and copper in chicken meat and feed samples by ICP-AES and ICP-MS”, J. Anal. Atom. Spectrom., Vol. 19, (2004), pp. 1361–1369. http://dx.doi.org/10.1039/b404558k10.1039/B404558KSearch in Google Scholar

[9] R. Araujo, F. Dias, S. Macedo, W. Santos and S. Ferreira: “Method development for the determination of manganese in wheat flour by slurry sampling flame atomic absorption spectrometry”, Food Chem., Vol. 101, (2007), 397–400. http://dx.doi.org/10.1016/j.foodchem.2005.10.02410.1016/j.foodchem.2005.10.024Search in Google Scholar

[10] N.S. Mokgalaka, R.I. McCrindle and B.M. Botha: “Multielement analysis of tea leaves by inductively coupled plasma optical emission spectrometry using slurry nebulization”, J. Anal. Atom. Spectrom., Vol. 19, (2004), pp. 1375–1378. http://dx.doi.org/10.1039/b407416e10.1039/b407416eSearch in Google Scholar

[11] J. Mierzwa, Y.C. Sun, Y.T. Chung and M.H. Yang: “Comparative determination of Ba, Cu, Fe, Pb and Zn in tea leaves by slurry sampling electrothermal atomic absorption and liquid sampling inductively coupled plasma atomic emission spectrometry”, Talanta, Vol. 47, (1998), pp. 1263–1270 http://dx.doi.org/10.1016/S0039-9140(98)00214-810.1016/S0039-9140(98)00214-8Search in Google Scholar

[12] M.A. Herrador and A.G. Gonzalez: “Pattern recognition procedures for differentiation of Green, Black and Oolong teas according to their metal content from inductively coupled plasma atomic emission spectrometry”, Talanta, Vol. 53, (2001), pp. 1249–1257. http://dx.doi.org/10.1016/S0039-9140(00)00619-610.1016/S0039-9140(00)00619-6Search in Google Scholar

[13] N. Carrion, A. Fernandez, E.J. Eljuri, M. Murillo and M. Franceschetto: “Trace metal analysis in plant tissue by inductively coupled plasma-atomic emission spectrometry with slurry sample introduction”, Atomic Spectrosc., Vol. 12, (1991), pp. 162–168. Search in Google Scholar

[14] C.K. Manickum, A.A. Verbeek: “Determination of Aluminum, Barium, Magnesium and Manganese in Tea Leaf by Slurry Nebulization Inductively Coupled Plasma Atomic Emission Spectrometry”, J. Anal. Atom. Spectrom., Vol. 9, (1994), p. 227. http://dx.doi.org/10.1039/ja994090022710.1039/ja9940900227Search in Google Scholar

[15] K.E. Jarvis: “Role of slurry nebulization for the analysis of geological samples by inductively coupled plasma mass spectroscopy”, Chem. Geol., Vol. 95, (1992), 73–84. http://dx.doi.org/10.1016/0009-2541(92)90044-610.1016/0009-2541(92)90044-6Search in Google Scholar

[16] A. Krejcova, D. Kahoun, T. Cernohorsky and M. Pouzar: “Determination of macro and trace element in multivitamins preparations by inductively coupled plasma optical emission spectrometry with slurry sample introduction”, Food Chem., Vol. 98, (2006), 171–178. http://dx.doi.org/10.1016/j.foodchem.2005.06.02210.1016/j.foodchem.2005.06.022Search in Google Scholar

[17] L. Ebdon, M. Foulkes and K. Sutton: “Slurry nebulisation in plasmas”, J Anal. At. Spectrom., Vol. 12, (1997), 213–229. http://dx.doi.org/10.1039/a604914a10.1039/a604914aSearch in Google Scholar

[18] W.A.H. Van Borm, J.A.C. Broekaert, R. Klockenkamper, P. Tschopel and F.C. Adams: “Aerosol sizing and transport studies with slurry nebulization in inductively coupled plasma spectrometry”, Spectrochim. Acta. B, Vol. 46, (1991), pp. 1033–1049. http://dx.doi.org/10.1016/0584-8547(91)80100-H10.1016/0584-8547(91)80100-HSearch in Google Scholar

[19] C.S. Silva, T. Blanco and A.J. Nobrega: “Analysis of cement slurries by inductively coupled plasma optical emission spectrometry with axial viewing”, Spectrochim. Acta B, Vol. 57, (2002), 29–33. http://dx.doi.org/10.1016/S0584-8547(01)00361-510.1016/S0584-8547(01)00361-5Search in Google Scholar

[20] A.N. Anthemidis, V.G. Pliatsika: “On-line formation and nebulization for inductively coupled plasma atomic emission spectrometry. Multi-element analysis of cocoa and coffee powder sample”, J Anal. Atom. Spectrom., Vol. 20, (2005), 1280–1286. http://dx.doi.org/10.1039/b506626c10.1039/b506626cSearch in Google Scholar

[21] D. Barałkiewicz: “Fast determination of lead in lake sediment samples using electrothermal atomic absorption spectrometry with slurry samples introduction”, Talanta, Vol. 56, (2002), 105–114. http://dx.doi.org/10.1016/S0039-9140(01)00547-110.1016/S0039-9140(01)00547-1Search in Google Scholar

[22] A. Piechalak, B. Tomaszewska and D. Bara’kiewicz: “Enhancing phytoremediative ability of Pisum sativum by EDTA application”, Phytochemistry, Vol. 64, (2003), pp. 1239–1251. http://dx.doi.org/10.1016/S0031-9422(03)00515-610.1016/S0031-9422(03)00515-6Search in Google Scholar

[23] D. M. Antosiewicz: “Study of calcium-dependent lead-tolerance in plants differing in their level of Ca-deficiency tolerance”, Environ. Pollut., Vol. 134, (2005), pp. 23–34. http://dx.doi.org/10.1016/j.envpol.2004.07.01910.1016/j.envpol.2004.07.019Search in Google Scholar PubMed

[24] M.J. Cal-Prieta, A. Carlosena, S. Andrede, S. Muniategui, P. Lopez-Mahia, E. Fernandez and D. Prada: “Development of an analytical scheme for the direct determination of antimony in geological materials by automated ultrasonic slurry sampling-ETAAS”, J. Anal. Atom. Spectrom., Vol. 14, (1999), pp. 703–710. http://dx.doi.org/10.1039/a807359g10.1039/A807359GSearch in Google Scholar

Published Online: 2007-7-3
Published in Print: 2007-12-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow