Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2007

Dopamine and iron mediated fragmentation of galactocerebroside and cardiolipin in micelles

  • Irina Yurkova EMAIL logo , Mikhail Kisel , Juergen Arnhold and Oleg Shadyro
From the journal Open Chemistry

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and thin-layer chromatography (TLC) have been used to study dopamine and iron mediated free-radical transformation of lipids in their hydrophilic parts. It has been shown that the action of the dopamine/Fe2+ system on galactocerebroside or cardiolipin, which are the components of mixed micelles, results in formation of ceramide or phosphatidic acid and phosphatidylhydroxyacetone, respectively. These data, when combined with results obtained using the ascorbate/Fe2+/H2O2 oxidizing system with the same substrates, demonstrate that the formation of these products proceeds via an OH-radical induced fragmentation taking place in polar moiety of the starting lipids.

[1] D.G. Graham, S.M. Tiffany, W.R. Bell Jr. and W.F. Gutknecht: ”Autoxidation versus covalent binding of quinones as the mechanisms of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C 1300 neuroblastoma cells invitro”, Mol. Pharmacol., Vol. 14, (1978), pp. 644–653. Search in Google Scholar

[2] G. Rona: ”Catecholamines cardiotoxity”, J. Mol. Cell. Cardiol., Vol. 17, (1985), pp. 291–306. http://dx.doi.org/10.1016/S0022-2828(85)80130-910.1016/S0022-2828(85)80130-9Search in Google Scholar

[3] Y. Luo and G.S. Roth: ”The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration”, Antioxid. Redox Signal., Vol. 2, (2000), pp. 449–460. http://dx.doi.org/10.1089/1523086005019222410.1089/15230860050192224Search in Google Scholar

[4] A.H. Stokes, T.G. Hastings and K.E. Vrana: ”Cytotoxic and genotoxic potential of dopamine”, J. Neurosci. Res., Vol. 55, (1999), pp. 659–665. http://dx.doi.org/10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-CSearch in Google Scholar

[5] Y. Luo, H. Umegaki, X. Wang, R. Abe and G.S. Roth: ”Dopamine induced apoptosis through an oxidation-involved SAPK/JNK activation pathway”, J. Biol. Chem., Vol. 273, (1998), pp. 3756–3764. http://dx.doi.org/10.1074/jbc.273.6.375610.1074/jbc.273.6.3756Search in Google Scholar

[6] E. Pileblad, A. Slivka, D. Bratvold and G. Cohen: ”Studies on the autoxidation of dopamine: interaction with ascorbate”, ABB., Vol. 263, (1988), pp. 447–452. Search in Google Scholar

[7] H.S. Maker, C. Weiss, D.J. Silides and G. Cohen: ”Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates”, J. Neurochem., Vol. 36, (1981), pp. 589–593. http://dx.doi.org/10.1111/j.1471-4159.1981.tb01631.x10.1111/j.1471-4159.1981.tb01631.xSearch in Google Scholar

[8] M. Tanaka, A. Sotomatsu, H. Kanai and S. Hirai: ”Dopa and dopamine cause cultured neuronal death in the presence of iron”, J. Neurol. Sci., Vol. 101, (1991), pp. 198–203. http://dx.doi.org/10.1016/0022-510X(91)90046-A10.1016/0022-510X(91)90046-ASearch in Google Scholar

[9] M. Tanaka, T. Yoshida, K. Okamoto and S. Hirai: ”DopaminCent. Eur. J. Chem.e and DOPA cause release of iron from ferritin and lipid peroxidation of liposomes”, Neuroreport., Vol. 10, (1999), pp. 1883–1887. http://dx.doi.org/10.1097/00001756-199906230-0001610.1097/00001756-199906230-00016Search in Google Scholar

[10] C. Velez-Pardo, M.J. Jimenez Del Rio, G. Ebinger and G. Vauquelin: ”Monoamine and iron-related toxicity: from “serotonin-binding proteins” to lipid peroxidation and apoptosis in PC12 cells”, Gen. Pharmacol., Vol. 31, (1998), pp. 19–24. Search in Google Scholar

[11] I.P. Edimicheva, M.A. Kisel, O.I. Shadyro, V.P. Vlasov and I.L. Yurkova: ”The damage to phospholipids caused by free radical attack on glycerol and sphingosine backbone”, Int. J. Radiat. Biol., Vol. 71, (1997), pp. 555–560. http://dx.doi.org/10.1080/09553009714388810.1080/095530097143888Search in Google Scholar

[12] S.N. Mueller, R. Batra, M. Senn, B. Giese, M.A. Kisel and O.I. Shadyro: ”Chemistry of C-2 glycerol radicals: indications for a new mechanism of lipid damage”, J. Am. Chem. Soc., Vol. 119, (1997), pp. 2795–2803. http://dx.doi.org/10.1021/ja964141610.1021/ja9641416Search in Google Scholar

[13] O.I. Shadyro, I.L. Yurkova and M.A. Kisel: ”Radiation-induced peroxidation and fragmentation of lipids in a model membrane”, Int. J. Radiat. Biol., Vol. 78, (2002), pp. 211–217. http://dx.doi.org/10.1080/0955300011010406510.1080/09553000110104065Search in Google Scholar

[14] O.I. Shadyro, I.L. Yurkova, M.A. Kisel, O. Brede and J. Arnhold: ”Formation of phosphatidic acid, ceramide and diglyceride on radiolysis of lipids: Identification by MALDI-TOF mass spectrometry”, Free Radic. Biol. Med., Vol. 36, (2004), pp. 1612–1624. http://dx.doi.org/10.1016/j.freeradbiomed.2004.03.01310.1016/j.freeradbiomed.2004.03.013Search in Google Scholar

[15] I. Yurkova, M. Kisel, J. Arnhold and O. Shadyro: ”Free-radical fragmentation of galactocerebrosides: a MALDI-TOF mass spectrometry study”, Chem. Phys. Lipids, Vol. 134, (2005), pp. 41–49. http://dx.doi.org/10.1016/j.chemphyslip.2004.11.00210.1016/j.chemphyslip.2004.11.002Search in Google Scholar

[16] I. Yurkova, M. Kisel, J. Arnhold and O. Shadyro: ”Iron-mediated free radical formation of signaling lipids in a model system”, Chem. Phys. Lipids, Vol. 137, (2005), pp. 29–37. http://dx.doi.org/10.1016/j.chemphyslip.2005.06.00210.1016/j.chemphyslip.2005.06.002Search in Google Scholar

[17] G. Rouser, G. Kritchevsky and H. Yamamoto: ”Lipids in the nervous system”, Adv. Lipid Res., Vol. 10, (1972), pp. 261–360. Search in Google Scholar

[18] S.F. Yang, S. Freer and A.A. Benson: ”Transphosphatidylation by phospholipase D”, J. Biol. Chem., Vol. 242, (1967), pp. 477–484. Search in Google Scholar

[19] R. Pedrosa and P. Soares-da-Silva: ”Oxidative and non-oxidative mechanisms of neuronal cell death and apoptosis by L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine”, Br. J. Pharmacol., Vol. 137, (2002), pp. 1305–1313. http://dx.doi.org/10.1038/sj.bjp.070498210.1038/sj.bjp.0704982Search in Google Scholar

[20] A. Klegeris, L.G. Korkina and S.A. Greenfield: ”Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions”, Free Radic Biol Med., Vol. 18, (1995), pp. 215–222. http://dx.doi.org/10.1016/0891-5849(94)00141-610.1016/0891-5849(94)00141-6Search in Google Scholar

[21] J.P. Spencer, A. Jenner, J. Butler, O.I. Aruoma, D.T. Dexter, P. Jenner and B. Halliwell: ”Evaluation of the pro-oxidant and antioxidant actions of L-DOPA and dopamine in vitro”, Free Radic. Res., Vol. 24, (1996), pp. 95–105. Search in Google Scholar

[22] A. Slivka and G. Cohen: ”Hydroxyl radical attack on dopamine”, J. Biol. Chem., Vol. 260, (1985), pp. 15466–15472. Search in Google Scholar

[23] O.I. Shadyro, G.K. Glushonok, T.G. Glushonok, I.P. Edimicheva, A.G. Moroz, A.A. Sosnovskaya, I.L. Yurkowa and G.I. Polozov: ”Quinones as free-radical fragmentation inhibitors in biologically important molecules”, Free Radic. Res., Vol. 36, (2002), pp. 859–867. http://dx.doi.org/10.1080/107157602100000529410.1080/1071576021000005294Search in Google Scholar

[24] B.J. Pettus, C.E. Chalfant and Y.A. Hannun: ”Ceramide in apoptosis: an overview and current perspectives”, Biochim. Biophys. Acta, Vol. 1585, (2002), pp. 114–125. Search in Google Scholar

[25] D. English, Y. Cui and R.A. Siddiqui: ”Messenger functions of phosphatidic acid”, Chem. Phys. Lipids, Vol. 80, (1996), pp. 117–132. http://dx.doi.org/10.1016/0009-3084(96)02549-210.1016/0009-3084(96)02549-2Search in Google Scholar

Published Online: 2007-12-1
Published in Print: 2007-12-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.11.2023 from https://www.degruyter.com/document/doi/10.2478/s11532-007-0041-9/html
Scroll to top button