Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 19, 2007

Conformational study on the structures and energies of the weakly bound complexes of AlCl3 with diatomic molecules

Issac Jimenez-Fabian, Abraham Jalbout and Abderahim Boutalib
From the journal Open Chemistry

Abstract

In this work we present the results of high level ab initio calculations on weakly bound complexes of aluminium trichloride and hydrogen halides, HX, halogens, X2 and diatomic interhalogens, XY (where X, Y = F, Cl, Br). Based upon these calculations we have predicted that all structures in the staggered conformation (except for Cl3AlFH and Cl3AlClH) are stable minima while those in the eclipsed configurations are transition state structures. In the XH complexes the strength of interaction with the Cl3Al group is FH > ClH > BrH. In the case of X2 species it is Br2 > F2 > Cl2, and finally in the XY (YX) group it is: FBr > ClBr > FCl > BrCl > BrF > ClF.

[1] P. Hassanzadeh, A. Citra, L. Andrews and M. Neurock: “Laser-Evaporated Aluminum Atom Reactions with Halogen Molecules. Infrared Spectra of AlXn (X = F, Cl, Br, I; n = 1–3) in Solid Argon”, J. Phys. Chem., Vol. 100, (1996), pp. 7317–7325. http://dx.doi.org/10.1021/jp953065a10.1021/jp953065aSearch in Google Scholar

[2] A. Suelson: “Bending frequency of gaseous aluminum oxide”, J. Phys. Chem., Vol. 74, (1970), pp. 2574–2575. http://dx.doi.org/10.1021/j100706a03010.1021/j100706a030Search in Google Scholar

[3] E.D. SamSonov, S.B. Osin and V.F. Shevelkov: “IR spectroscopic study of reaction products of aluminum and gallium atoms with chlorine in argon matrix”, Russ. J. Inorg. Chem., Vol. 33, (1988), pp. 1598–1605. Search in Google Scholar

[4] M. Wilson, M.B. Coolidge and G.J. Mains: “Stability and structure of Lewis adducts of aluminum hydrides and halides”, J. Phys. Chem., Vol. 96, (1992), pp. 4851–4859. http://dx.doi.org/10.1021/j100191a02510.1021/j100191a025Search in Google Scholar

[5] R.G.S. Pong, A.E. Shirk and J.S. Shirk: “Infrared spectra of aluminum chloride bromide (AlCl2Br, AlClBr2), and aluminum bromide in solid argon”, J. Chem. Phys., Vol. 70, (1979), pp. 525–531. http://dx.doi.org/10.1063/1.43716510.1063/1.437165Search in Google Scholar

[6] C.E. Sjoegren, P. Klaeboe and E. Ryther: “High temperature infrared spectra of dimeric and monomeric aluminum bromide, aluminum iodide and gallium chloride in the vapor phase”, Spectrochim. Acta, Vol. 40a, (1984), pp. 457–465. Search in Google Scholar

[7] P.G. Jasien: “Lewis acid-base complexes of aluminum chloride”, J. Phys. Chem., Vol. 96, (1992), pp. 9273–9278. http://dx.doi.org/10.1021/j100202a03910.1021/j100202a039Search in Google Scholar

[8] T.J. LePage and K.B. Wiberg: “Rotational barriers in aldehydes and ketones coordinated to neutral Lewis acids”, J. Am. Chem. Soc., Vol. 110, (1988), pp. 6642–6650. http://dx.doi.org/10.1021/ja00228a00710.1021/ja00228a007Search in Google Scholar

[9] J.W. Cannolly and D.S. Dudis: “Binding Energies of Some Aluminum Chloride Complexes of Poly(p-phenylenebenzobisthiazole) (PBZT) Model Compounds”, Macromolecules, Vol. 27, (1994), pp. 1423–1427 http://dx.doi.org/10.1021/ma00084a02210.1021/ma00084a022Search in Google Scholar

[10] D.W. Ball: “Ab Initio Studies of AlH3-H2O, AlF3-H2O, and AlCl3-H2O Complexes”, J. Phys. Chem., Vol. 99, (1995), pp. 12786–12789. http://dx.doi.org/10.1021/j100034a01610.1021/j100034a016Search in Google Scholar

[11] O. Gropen, R. Johansen, A. Haaland and O. Stokeland: “Ab initio molecular orbital calculations on aquotrihydroaluminum, di-m-hydroxytetrahydrodialuminum, and some related species”, J. Organomet. Chem., Vol. 92, (1975), pp. 147–156. http://dx.doi.org/10.1016/S0022-328X(00)92083-710.1016/S0022-328X(00)92083-7Search in Google Scholar

[12] G.N. Papatheodorou, L.A. Curtiss and V.A. Maroni: “Raman spectra, ab initio molecular orbital calculations, vibrational analysis, and thermodynamic functions for ammonia:AlX3 (X = F,Cl,Br)”, J. Chem. Phys., Vol. 78, (1983), pp. 3303–3315. http://dx.doi.org/10.1063/1.44519610.1063/1.445196Search in Google Scholar

[13] R. Zannetti, C. Marega, A. Marigo, A. Martorana: “Layer-lattices in Ziegler-Natta catalysts”, J. Polym. Sci., Part B: Polymer Physics, (1988), Vol. 26, (1988), p. 2399. http://dx.doi.org/10.1002/polb.1988.09026120210.1002/polb.1988.090261202Search in Google Scholar

[14] D. Dou, D.R. Ketchum, E.J.M. Hamilton, P.A. Florian, K.E. Vermillon, P.J. Grandinetti and S.G. Shore: “Reactions of Aluminum Hydride Derivatives with Ammonia-Borane: A New Approach toward AlN/BN Materials”, Chem. Mater., Vol. 8, (1996), pp. 2839–2842. http://dx.doi.org/10.1021/cm960355a10.1021/cm960355aSearch in Google Scholar

[15] S. Sakai: “Theoretical studies of the mechanism of the alumination reaction of ethylene as a Ziegler-Natta-type reaction model”, J. Phys. Chem., Vol. 95, (1991), pp. 175–178. http://dx.doi.org/10.1021/j100154a03510.1021/j100154a035Search in Google Scholar

[16] S. Sakai: “A theoretical investigation of Ziegler-Natta polymerization reaction mechanisms of acetylene”, J. Phys. Chem., Vol. 95, (1991), pp. 7089–7093. http://dx.doi.org/10.1021/j100171a06910.1021/j100171a069Search in Google Scholar

[17] S. Bates and J. Dwyer: “Ab initio study of carbon monoxide adsorption on zeolites”, J. Phys. Chem., Vol. 97, (1993), pp. 5897–5900. http://dx.doi.org/10.1021/j100124a02010.1021/j100124a020Search in Google Scholar

[18] A.H. Edwards and K.A. Jones: “Molecular orbital calculations on methyl alkyls and hydrides used in the organometallic vapor phase epitaxy of some III-V”, J. Chem. Phys., Vol. 94, (1991), pp. 2894–2895. http://dx.doi.org/10.1063/1.45981110.1063/1.459811Search in Google Scholar

[19] J. Che, H.-S. Choe, Y.-M. Chook, E. Jensen, P.R. Seida and M.M. Franci: “π-Complexes of alkenes to trivalent aluminum”, Organometallics, Vol. 9, (1990), pp. 2430–2436. http://dx.doi.org/10.1021/om00159a00910.1021/om00159a009Search in Google Scholar

[20] J.L. Atwood, F.R. Bennett, F.M. Elms, C. Jones, C.L. Raston and K.D. Robinson: “Tertiary amine stabilized dialane”, J. Am. Chem. Soc., Vol. 113, (1991), pp. 8183–8285. http://dx.doi.org/10.1021/ja00021a06310.1021/ja00021a063Search in Google Scholar

[21] C.M.B. Marsh, T.P. Hamilton, Y. Xie and H.F. Schaefer: “Ammonia alane”, J. Chem. Phys., Vol. 96, (1992), pp. 5310–5317. http://dx.doi.org/10.1063/1.46271610.1063/1.462716Search in Google Scholar

[22] A. Haaland: “Covalent and dative bonds to main group metals, a useful difference”, Angew. Chem. Int. Edit., Vol. 101, (1989), pp. 1017–1032. Search in Google Scholar

[23] P. Jungwirth and R. Zahradník: “On the stability of XH3YH3 charge-transfer complexes (X = B, Al, Ga, In and Y = N, or P for X = B, Al): an ab initio study”, J. Mol. Struct. (Theochem), Vol. 283, (1993), pp. 317–320. http://dx.doi.org/10.1016/0166-1280(93)87143-210.1016/0166-1280(93)87143-2Search in Google Scholar

[24] V. Branchadell, A. Sbai and A. Oliva: “Density Functional Study of Complexes between Lewis Acids and Bases”, J. Phys. Chem., Vol. 99, (1995), pp. 6472–6476. http://dx.doi.org/10.1021/j100017a02910.1021/j100017a029Search in Google Scholar

[25] A.Y. Timoshkin, A. Suvorov, V. Bettinger and H. F. Schaefer: “Role of the Terminal Atoms in the Donor-Acceptor Complexes MX3-D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As)”, J. Am. Chem. Soc., Vol. 121, (1999), pp. 5687–5699. http://dx.doi.org/10.1021/ja983408t10.1021/ja983408tSearch in Google Scholar

[26] H. Anane, A. Jarid and A. Boutalib: “G2(MP2) Molecular Orbital Study of [H3AlXH3]-(X = C, Si, and Ge) and H3AlYH3 (Y = N, P, and As) Complexes”, J. Phys. Chem. A, Vol. 103, (1999), pp. 9847–9852. http://dx.doi.org/10.1021/jp991445g10.1021/jp991445gSearch in Google Scholar

[27] A. Jarid and A. Boutalib: “G2 Molecular Orbital Study of [H3AlXH]-(X = NH, PH, AsH, O, S, and Se) and H3AlYH (Y = OH, SH, SeH, F, Cl, and Br) Donor-Acceptor Complexes”, J. Phys. Chem. A, Vol. 104, (2000), pp. 9220–9225. http://dx.doi.org/10.1021/jp000893h10.1021/jp000893hSearch in Google Scholar

[28] A. Jarid, A. Boutalib, I. Nebot-Gil and F. Tomás: “Comparative G2(MP2) molecular orbital study of [H3AlX(CH3)2]-(X=N, P, and As) and H3AlY(CH3)2 (Y=O, S, and Se) donor-acceptor complexes”, J. Mol. Struct. (Theochem), Vol. 572, (2001), pp. 161–167. http://dx.doi.org/10.1016/S0166-1280(01)00624-810.1016/S0166-1280(01)00624-8Search in Google Scholar

[29] A. Boutalib, A. Jarid, I. Nebot-Gil and F. Tomás: “G2(MP2) Investigation of Alane-[X(CH3)3]-(X = C, Si, and Ge) and Alane-Y(CH3)3 (Y = N, P, and As) Interactions”, J. Phys. Chem. A, Vol. 105, (2001), pp. 6526–6529. http://dx.doi.org/10.1021/jp010290l10.1021/jp010290lSearch in Google Scholar

[30] H. Anane, A. Jarid, A. Boutalib, I. Nebot-Gil and F. Tomás: “G2(MP2) molecular orbital study of the substituent effect in the H3BPH3-nFn (n=0–3) donor-acceptor complexes”, Chem. Phys. Lett., Vol. 324, (2000), pp. 156–160. http://dx.doi.org/10.1016/S0009-2614(00)00586-810.1016/S0009-2614(00)00586-8Search in Google Scholar

[31] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J. B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, Gaussian 03, Revision C.02, 2004. Search in Google Scholar

[32] J.A. Pople, H.B. Schlegel, J.S. Binkly, M.J. Frisch, R.A. Whitside, R.F. Hout and W.J. Hehre: “Molecular orbital studies of vibrational frequencies”, Int. J. Quantum Chem. Symp., Vol. 15, (1981), pp. 269–278. Search in Google Scholar

[33] L.A. Curtiss, K. Ragavachari and J.A. Pople: “Gaussian-2 theory using reduced Moeller-Plesset orders”, J. Chem. Phys., Vol. 98, (1993), pp. 1293–1298. http://dx.doi.org/10.1063/1.46429710.1063/1.464297Search in Google Scholar

[34] L.A. Curtiss and J.A. Pople: “Theoretical study of tri-m-hydrodihydrodiboron(1+), diborane(6) radical ion(1+), and diborane(6) (B2H5+, B2H6+, and B2H6)”, J. Chem. Phys., (1988), Vol 89, pp. 4875–4879. http://dx.doi.org/10.1063/1.45565610.1063/1.455656Search in Google Scholar

[35] C. Gonzalez and H.B. Schlegel: “An improved algorithm for reaction path following”, J. Chem. Phys., Vol. 90, (1989), pp. 2154–2161. http://dx.doi.org/10.1063/1.45601010.1063/1.456010Search in Google Scholar

[36] C. Gonzalez and H.B. Schlegel: “Reaction path following in mass-weighted internal coordinates”, J. Phys. Chem., Vol. 94, (1990), pp. 5523–5527. http://dx.doi.org/10.1021/j100377a02110.1021/j100377a021Search in Google Scholar

[37] A.F. Jalbout and A. Boutalib: “Ab Initio Molecular Orbital Investigation of the Amine-Alanes (CH3)nH3-nAlNX3 and Phosphane-Alanes (CH3)nH3-nAlPX3 (X = H, F, and Cl; n = 0–3) Complexes”, J. Phys. Chem. A, Vol. 110, (2006), pp. 12524–12527. http://dx.doi.org/10.1021/jp063882i10.1021/jp063882iSearch in Google Scholar

[38] A.F. Jalbout, F. Nazari and L. Turker: “Gaussian Based Methods in Molecular Sciences”, J. Mol. Struct. (THEOCHEM), Vol. 671, (2004), pp. 1–24. http://dx.doi.org/10.1016/S0166-1280(03)00347-610.1016/S0166-1280(03)00347-6Search in Google Scholar

Published Online: 2007-9-19
Published in Print: 2007-12-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow