Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 11, 2008

Molecular machines operated by light

Alberto Credi and Margherita Venturi
From the journal Open Chemistry

Abstract

The bottom-up construction and operation of machines and motors of molecular size is a topic of great interest in nanoscience, and a fascinating challenge of nanotechnology. Researchers in this field are stimulated and inspired by the outstanding progress of molecular biology that has begun to reveal the secrets of the natural nanomachines which constitute the material base of life. Like their macroscopic counterparts, nanoscale machines need energy to operate. Most molecular motors of the biological world are fueled by chemical reactions, but research in the last fifteen years has demonstrated that light energy can be used to power nanomachines by exploiting photochemical processes in appropriately designed artificial systems. As a matter of fact, light excitation exhibits several advantages with regard to the operation of the machine, and can also be used to monitor its state through spectroscopic methods. In this review we will illustrate the design principles at the basis of photochemically driven molecular machines, and we will describe a few examples based on rotaxane-type structures investigated in our laboratories.

[1] ITRS Roadmap for Semiconductors, 2007 Edition, available at http://www.itrs.net (accessed April 2008) Search in Google Scholar

[2] S. A. Edwards, The Nanotech Pioneers, Wiley-VCH, Weinheim, Germany (2006) 10.1002/9783527612086Search in Google Scholar

[3] S.E. Thompson, S. Parthasarathy, Mater. Today, 9, 20 (2006) http://dx.doi.org/10.1016/S1369-7021(06)71539-510.1016/S1369-7021(06)71539-5Search in Google Scholar

[4] R. P. Feynman, Eng. Sci., 23, 22 (1960) (See also: http://www.feynmanonline.com) Search in Google Scholar

[5] J.-M. Lehn, Proc. Natl. Acad. Sci. USA, 99, 4763 (2002) http://dx.doi.org/10.1073/pnas.07206559910.1073/pnas.072065599Search in Google Scholar PubMed PubMed Central

[6] Molecular Motors (Ed.: M. Schliwa), Wiley-VCH, Weinheim (2003) Search in Google Scholar

[7] D. S. Goodsell, Bionanotechnology — Lessons from Nature, Wiley, Hoboken (2004) 10.1002/0471469572Search in Google Scholar

[8] R. A. L. Jones, Soft Machines — Nanotechnology and life, OUP, Oxford (2005) Search in Google Scholar

[9] S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu, O. Manabe, J. Am. Chem. Soc, 103, 111 (1981) http://dx.doi.org/10.1021/ja00391a02110.1021/ja00391a021Search in Google Scholar

[10] H. Iwamura, K. Mislow, Acc. Chem. Res., 21, 175 (1988) http://dx.doi.org/10.1021/ar00148a00710.1021/ar00148a007Search in Google Scholar

[11] S. Shinkai, M. Ikeda, A. Sugasaki, M. Takeuchi, Acc. Chem. Res., 34, 494 (2001) http://dx.doi.org/10.1021/ar000177y10.1021/ar000177ySearch in Google Scholar PubMed

[12] T. C. Bedard, J. S. Moore, J. Am. Chem. Soc., 117, 10662 (1995) http://dx.doi.org/10.1021/ja00148a00810.1021/ja00148a008Search in Google Scholar

[13] T. A. V. Khuong, J. E. Nunez, C. E. Godinez, M. A. Garcia-Garibay, Acc. Chem. Res., 39, 413 (2006) http://dx.doi.org/10.1021/ar068021710.1021/ar0680217Search in Google Scholar PubMed

[14] K. Skopek, M. C. Hershberger, J. A. Gladysz, Coord. Chem. Rev., 251, 1723 (2007) http://dx.doi.org/10.1016/j.ccr.2006.12.01510.1016/j.ccr.2006.12.015Search in Google Scholar

[15] N. Koga, Y. Kawada, H. Iwamura, J. Am. Chem. Soc., 105, 5498 (1983) http://dx.doi.org/10.1021/ja00354a06310.1021/ja00354a063Search in Google Scholar

[16] T. R. Kelly, M. C. Bowyer, K. V. Bhaskar, D. Bebbington, A. Garcia, F. Lang, M.-H. Kim, M.P. Jette, J. Am. Chem. Soc., 116, 3657 (1994) http://dx.doi.org/10.1021/ja00087a08510.1021/ja00087a085Search in Google Scholar

[17] T. Muraoka, K. Kinbara, T. Aida, Nature, 440, 512 (2006) http://dx.doi.org/10.1038/nature0463510.1038/nature04635Search in Google Scholar

[18] T. R. Kelly, Acc. Chem. Res., 34, 514 (2001) http://dx.doi.org/10.1021/ar000167x10.1021/ar000167xSearch in Google Scholar

[19] N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa, Nature, 401, 152 (1999) http://dx.doi.org/10.1038/4364610.1038/43646Search in Google Scholar

[20] A. Bissell, E. Córdova, A. E. Kaifer, J. F. Stoddart, Nature, 369, 133 (1994) http://dx.doi.org/10.1038/369133a010.1038/369133a0Search in Google Scholar

[21] J. D. Badjic, V. Balzani, A. Credi, S. Silvi, J. F. Stoddart, Science, 303, 1845 (2004) http://dx.doi.org/10.1126/science.109479110.1126/science.1094791Search in Google Scholar

[22] M. C. Jiménez-Molero, C. Dietrich-Buchecker, J.-P. Sauvage, Angew. Chem. Int. Ed., 39, 3284 (2000) http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3284::AID-ANIE3284>3.0.CO;2-710.1002/1521-3773(20000915)39:18<3284::AID-ANIE3284>3.0.CO;2-7Search in Google Scholar

[23] S. Saha, K. C.-F. Leug, T. D. Nguyen, J. F. Stoddart, J. I. Zink, Adv. Funct. Mater., 17, 685 (2007) http://dx.doi.org/10.1002/adfm.20060098910.1002/adfm.200600989Search in Google Scholar

[24] P. Thordarson, E. J. A. Bijsterveld, A. E. Rowan, R. J. M. Nolte, Nature, 424, 915 (2003) http://dx.doi.org/10.1038/nature0192510.1038/nature01925Search in Google Scholar

[25] W. B. Sherman, N. C. Seeman, Nano Lett., 4, 1203 (2004) http://dx.doi.org/10.1021/nl049527q10.1021/nl049527qSearch in Google Scholar

[26] Y. Tian, Y. He, Y. Chen, P. Yin, C. Mao, Angew. Chem. Int. Ed., 44, 4355 (2005) http://dx.doi.org/10.1002/anie.20050070310.1002/anie.200500703Search in Google Scholar

[27] Y. J. Bath, S. J. Green, A. J. Turberfield, Angew. Chem. Int. Ed., 44, 4358 (2005) http://dx.doi.org/10.1002/anie.20050126210.1002/anie.200501262Search in Google Scholar

[28] Y. Shirai, J. F. Morin, T. Sasaki, J. M. Guerrero, J. M. Tour, Chem. Soc. Rev., 35, 1043 (2006) http://dx.doi.org/10.1039/b514700j10.1039/b514700jSearch in Google Scholar

[29] W. F. Paxton, A. Sen, T. E. Mallouk, Chem. Eur. J., 11, 6462 (2005) and references therein http://dx.doi.org/10.1002/chem.20050016710.1002/chem.200500167Search in Google Scholar

[30] J. Vicario, R. Eelkema, W. R. Browne, A. Meetsma, R. M. La Crois, B. L. Feringa, Chem. Commun., 3936 (2005) 10.1039/b505092hSearch in Google Scholar

[31] V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed., 39, 3348 (2000) http://dx.doi.org/10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-XSearch in Google Scholar

[32] Acc. Chem. Res., 2001, 34(6); special issue on Molecular Machines (Ed.: J. F. Stoddart) 10.1021/ar010084wSearch in Google Scholar

[33] Struct. Bond., 2001, 99; special volume on Molecular Machines and Motors (Ed.: J.-P. Sauvage) Search in Google Scholar

[34] A. H. Flood, R. J. A. Ramirez, W. Q. Deng, R. P. Muller, W. A. Goddard, J. F. Stoddart, Aust. J. Chem., 57, 301 (2004) http://dx.doi.org/10.1071/CH0330710.1071/CH03307Search in Google Scholar

[35] Top. Curr. Chem. 2005, 262; special volume on Molecular Machines (Ed.: T. R. Kelly) Search in Google Scholar

[36] J.-P. Sauvage, Chem. Commun., 1507 (2005) 10.1039/b500680pSearch in Google Scholar

[37] G. S. Kottas, L. I. Clarke, D. Horinek, J. Michl, Chem. Rev., 105, 1281 (2005) http://dx.doi.org/10.1021/cr030099310.1021/cr0300993Search in Google Scholar PubMed

[38] K. Kinbara, T. Aida, Chem. Rev., 105, 1377 (2005) http://dx.doi.org/10.1021/cr030071r10.1021/cr030071rSearch in Google Scholar PubMed

[39] F. C. Simmel, W. U. Dittmer, Small, 1, 284 (2005) http://dx.doi.org/10.1002/smll.20040011110.1002/smll.200400111Search in Google Scholar PubMed

[40] H. Tian, Q.-C. Wang, Chem. Soc. Rev., 35, 361 (2006) http://dx.doi.org/10.1039/b512178g10.1039/b512178gSearch in Google Scholar PubMed

[41] Org. Biomol. Chem., 2006, 4(18); special issue (Ed.: I. Willner) on DNA-based Nanoarchitectures and Nanomachines 10.1039/b609077jSearch in Google Scholar PubMed

[42] A. Credi, Aust. J. Chem., 59, 157 (2006) http://dx.doi.org/10.1071/CH0602510.1071/CH06025Search in Google Scholar

[43] W. R. Browne, B. L. Feringa, Nat. Nanotech., 1, 25 (2006) http://dx.doi.org/10.1038/nnano.2006.4510.1038/nnano.2006.45Search in Google Scholar PubMed

[44] E. R. Kay, D. A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed., 46, 72 (2007) http://dx.doi.org/10.1002/anie.20050431310.1002/anie.200504313Search in Google Scholar PubMed

[45] Adv. Funct. Mater., 2007, 17(5); special issue (Eds.: A. Credi, H. Tian) on Molecular Machines and Switches Search in Google Scholar

[46] A. Mateo-Alonso, D. M. Guldi, F. Paolucci, M. Prato, Angew. Chem. Int. Ed., 46, 8120 (2007) http://dx.doi.org/10.1002/anie.20070272510.1002/anie.200702725Search in Google Scholar PubMed

[47] V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines — Concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim (2008) 10.1002/9783527621682Search in Google Scholar

[48] The direct linkage of macroscopic and nanoscale attributes, irrespective of whether there exists a scientific basis for the linkage, has been referred to as ‘nanomapping’. See: T. Coffey, J. Krim, Phys. Rev. Lett., 96, 186104 (2006) http://dx.doi.org/10.1103/PhysRevLett.96.18610410.1103/PhysRevLett.96.186104Search in Google Scholar PubMed

[49] Molecular Switches, 2nd Ed. (Ed. B. L. Feringa), Wiley-VCH, Weinheim (2008) Search in Google Scholar

[50] Ref. [47], Chapter 8 Search in Google Scholar

[51] J. V. Hernandez, E. R. Kay, D. A. Leigh, Science, 306, 1532 (2004) http://dx.doi.org/10.1126/science.110394910.1126/science.1103949Search in Google Scholar PubMed

[52] V. Balzani, A. Credi, M. Venturi, Chem. Eur. J., 14, 26 (2008) http://dx.doi.org/10.1002/chem.20070139710.1002/chem.200701397Search in Google Scholar PubMed

[53] V. Balzani, Photochem. Photobiol. Sci., 2, 479 (2003) http://dx.doi.org/10.1039/b300075n10.1039/b300075nSearch in Google Scholar PubMed

[54] M. Marcaccio, F. Paolucci, S. Roffia, in Trends in Molecular Electrochemistry (Eds. A. J. L. Pombeiro, C. Amatore), Dekker, New York (2004) p. 223 Search in Google Scholar

[55] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Third Edition, Springer, New York (2006). 10.1007/978-0-387-46312-4Search in Google Scholar

[56] N. Armaroli, V. Balzani, Angew. Chem. Int. Ed., 46, 52 (2007) http://dx.doi.org/10.1002/anie.20060237310.1002/anie.200602373Search in Google Scholar PubMed

[57] G. Steinberg-Yfrach, J.-L. Rigaud, E. N. Durantini, A. L. Moore, D. Gust, T. A. Moore, Nature, 392, 479 (1998) http://dx.doi.org/10.1038/3311610.1038/33116Search in Google Scholar PubMed

[58] Catenanes, Rotaxanes and Knots (Eds.: J.-P. Sauvage, C. Dietrich-Buchecker), Wiley-VCH, Weinheim (1999) Search in Google Scholar

[59] V. Balzani, A. Credi, M. Venturi, Proc. Natl. Acad. Sci. USA, 99, 4814 (2002) http://dx.doi.org/10.1073/pnas.02263159910.1073/pnas.022631599Search in Google Scholar PubMed PubMed Central

[60] P. Thordarson, R. J. M. Nolte, A. E. Rowan, Aust. J. Chem., 57, 323 (2004) and references therein http://dx.doi.org/10.1071/CH0330210.1071/CH03302Search in Google Scholar

[61] Photochromism: Molecules and Systems, (Eds.: H. Dürr, H. Bouas-Laurent), Elsevier, Amsterdam (2003) Search in Google Scholar

[62] A. Cembran, F. Bernardi, M. Garavelli, L. Gagliardi, G. Orlandi, J. Am. Chem. Soc., 126, 3234 (2004) and references therein http://dx.doi.org/10.1021/ja038327y10.1021/ja038327ySearch in Google Scholar PubMed

[63] M. Irie, M. Kato, J. Am. Chem. Soc., 107, 1024 (1985) http://dx.doi.org/10.1021/ja00290a04510.1021/ja00290a045Search in Google Scholar

[64] M. M. Pollard, M. Klok, D. Pijper, B. L. Feringa, Adv. Funct. Mater., 17, 718 (2007) and references therein http://dx.doi.org/10.1002/adfm.20060102510.1002/adfm.200601025Search in Google Scholar

[65] B. L. Feringa, J. Org. Chem., 72, 6635 (2007) and references therein http://dx.doi.org/10.1021/jo070394d10.1021/jo070394dSearch in Google Scholar

[66] I. Willner, V. Pardo-Yssar, E. Katz, K. T. Ranjit, J. Electroanal. Chem., 497, 172 (2001) http://dx.doi.org/10.1016/S0022-0728(00)00455-110.1016/S0022-0728(00)00455-1Search in Google Scholar

[67] C. A. Stanier, S. J. Alderman, T. D. W. Claridge, H. L. Anderson, Angew. Chem. Int. Ed., 41, 1769 (2002) http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1769::AID-ANIE1769>3.0.CO;2-N10.1002/1521-3773(20020517)41:10<1769::AID-ANIE1769>3.0.CO;2-NSearch in Google Scholar

[68] D.-H. Qu, Q.-C. Wang, X. Ma, H. Tian, Chem. Eur. J., 11, 5929 (2005) http://dx.doi.org/10.1002/chem.20040131310.1002/chem.200401313Search in Google Scholar

[69] H. Murakami, A. Kawabuchi, R. Matsumoto, T. Ido, N. Nakashima, J. Am. Chem. Soc., 127, 15891 (2005) http://dx.doi.org/10.1021/ja053690l10.1021/ja053690lSearch in Google Scholar

[70] V. Balzani, A. Credi, F. Marchioni, J. F. Stoddart, Chem. Commun., 1861 (2001) Search in Google Scholar

[71] Electron Transfer in Chemistry (Ed.: V. Balzani), Wiley-VCH, Weinheim (2001) Vols. 1–5 Search in Google Scholar

[72] R. Ballardini, V. Balzani, M. T. Gandolfi, L. Prodi, M. Venturi, D. Philp, H. G. Ricketts, J. F. Stoddart, Angew. Chem. Int. Ed. Engl., 32, 1301 (1993) http://dx.doi.org/10.1002/anie.19931301110.1002/anie.199313011Search in Google Scholar

[73] P. R. Ashton, R. Ballardini, V. Balzani, S. E. Boyd, A. Credi, M. T. Gandolfi, M. Gómez-López, S. Iqbal, D. Philp, J. A. Preece, L. Prodi, H. G. Ricketts, J. F. Stoddart, M. S. Tolley, M. Venturi, A. J. P. White, D. J. Williams, Chem. Eur. J., 3, 152 (1997) http://dx.doi.org/10.1002/chem.1997003012310.1002/chem.19970030123Search in Google Scholar

[74] A. C. Benniston, A. Harriman, D. S. Yufit, Angew. Chem. Int. Ed. Engl., 36, 2356 (1997) http://dx.doi.org/10.1002/anie.19972356110.1002/anie.199723561Search in Google Scholar

[75] P. R. Ashton, R. Ballardini, V. Balzani, E. C. Constable, A. Credi, O. Kocian, S. J. Langford, J. A: Preece, L. Prodi, E. R. Schofield, N. Spencer, J. F. Stoddart, S. Wenger, Chem. Eur. J., 4, 2413 (1998) http://dx.doi.org/10.1002/(SICI)1521-3765(19981204)4:12<2413::AID-CHEM2413>3.0.CO;2-A10.1002/(SICI)1521-3765(19981204)4:12<2413::AID-CHEM2413>3.0.CO;2-ASearch in Google Scholar

[76] P. R. Ashton, V. Balzani, O. Kocian, L. Prodi, N. Spencer, J. F. Stoddart, J. Am. Chem. Soc., 120, 11190 (1998) http://dx.doi.org/10.1021/ja981889a10.1021/ja981889aSearch in Google Scholar

[77] S. Saha, E. Johansson, A. H. Flood, H.-R. Tseng, J. I. Zink, J. F. Stoddart, Chem. Eur. J., 11, 6846 (2005) http://dx.doi.org/10.1002/chem.20050037110.1002/chem.200500371Search in Google Scholar

[78] P. R. Ashton, R. Ballardini, V. Balzani, A. Credi, R. Dress, E. Ishow, C. J. Kleverlaan, O. Kocian, J. A. Preece, N. Spencer, J. F. Stoddart, M. Venturi, S. Wenger, Chem. Eur. J., 6, 3558 (2000) http://dx.doi.org/10.1002/1521-3765(20001002)6:19<3558::AID-CHEM3558>3.0.CO;2-M10.1002/1521-3765(20001002)6:19<3558::AID-CHEM3558>3.0.CO;2-MSearch in Google Scholar

[79] V. Balzani, M. Clemente-León, A. Credi, B. Ferrer, M. Venturi, A. H. Flood, J. F. Stoddart, Proc. Natl. Acad. Sci. USA, 103, 1178 (2006) http://dx.doi.org/10.1073/pnas.050901110310.1073/pnas.0509011103Search in Google Scholar

[80] For a related example of a photochemically driven molecular shuttle, see: A. M. Brouwer, C. Frochot, F. G. Gatti, D. A. Leigh, L. Mottier, F. Paolucci, S. Roffia, G. W. H. Wurpel, Science, 291, 2124 (2001) http://dx.doi.org/10.1126/science.105788610.1126/science.1057886Search in Google Scholar

[81] P. Raiteri, G. Bussi, C. S. Cucinotta, A. Credi, J. F. Stoddart, M. Parrinello, Angew. Chem. Int. Ed., 47, 3536 (2008) http://dx.doi.org/10.1002/anie.20070520710.1002/anie.200705207Search in Google Scholar

[82] V. Balzani, M. Clemente-León, A. Credi, M. Semeraro, M. Venturi, H.-R. Tseng, S. Wenger, S. Saha, J. F. Stoddart, Aust. J. Chem., 59, 193 (2006) http://dx.doi.org/10.1071/CH0601910.1071/CH06019Search in Google Scholar

[83] G. J. E. Davidson, S. J. Loeb, P. Passaniti, S. Silvi, A. Credi, Chem. Eur. J., 12, 3233 (2006) http://dx.doi.org/10.1002/chem.20050123710.1002/chem.200501237Search in Google Scholar

[84] G. Rogez, B. Ferrer Ribera, A. Credi, R. Ballardini, M. T. Gandolfi, V. Balzani, Y. Liu, B. H. Northrop, J. F. Stoddart, J. Am. Chem. Soc., 129, 4633 (2007) http://dx.doi.org/10.1021/ja067739e10.1021/ja067739eSearch in Google Scholar

[85] B. Ferrer, G. Rogez, A. Credi, R. Ballardini, M. T. Gandolfi, V. Balzani, Y. Liu, H.-R. Tseng, J. F. Stoddart, Proc. Natl. Acad. Sci. USA, 103, 18411 (2006) http://dx.doi.org/10.1073/pnas.060645910310.1073/pnas.0606459103Search in Google Scholar PubMed PubMed Central

[86] S. Saha, A. H. Flood, J. F. Stoddart, S. Impellizzeri, S. Silvi, M. Venturi, A. Credi, J. Am. Chem. Soc., 129, 12159 (2007) http://dx.doi.org/10.1021/ja072459010.1021/ja0724590Search in Google Scholar PubMed

[87] D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res., 34, 40 (2001) http://dx.doi.org/10.1021/ar980130110.1021/ar9801301Search in Google Scholar PubMed

[88] V. Balzani, A. Credi, M. Venturi, ChemSusChem, 1, 26 (2008) and references therein http://dx.doi.org/10.1002/cssc.20070008710.1002/cssc.200700087Search in Google Scholar PubMed

[89] E. R. Kay, D. A. Leigh, Nature, 440, 286 (2006) http://dx.doi.org/10.1038/440286b10.1038/440286bSearch in Google Scholar PubMed

[90] S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo, F. M. Raymo, M. Baroncini, A. Credi, J. Am. Chem. Soc., 129, 13378 (2007) http://dx.doi.org/10.1021/ja075385110.1021/ja0753851Search in Google Scholar PubMed

[91] A. Credi, S. Dumas, S. Silvi, M. Venturi, A. Arduini, A. Pochini, A. Secchi, J. Org. Chem., 69, 5881 (2004) http://dx.doi.org/10.1021/jo049412710.1021/jo0494127Search in Google Scholar PubMed

[92] J. T. C. Wojtyk, A. Wasey, N.-N. Xiao, P. M. Kazmaier, S. Hoz, C. Yu, R. P. Lemieux, E. Buncel, J. Phys. Chem. A, 111, 2511 (2007) http://dx.doi.org/10.1021/jp068575r10.1021/jp068575rSearch in Google Scholar PubMed

[93] F. M. Raymo, S. Giordani, A. J. P. White, D. J. Williams, J. Org. Chem., 68, 4158 (2003) http://dx.doi.org/10.1021/jo034045510.1021/jo0340455Search in Google Scholar PubMed

[94] F. M. Raymo, R. J. Alvarado, S. Giordani, M. A. Cejas, J. Am. Chem. Soc., 125, 2361 (2003) http://dx.doi.org/10.1021/ja027977j10.1021/ja027977jSearch in Google Scholar PubMed

[95] V. Balzani, A. Credi, M. Venturi, ChemPhysChem, 9, 202 (2008) http://dx.doi.org/10.1002/cphc.20070052810.1002/cphc.200700528Search in Google Scholar PubMed

[96] M. Clemente-León, A. Credi, M.-V. Martínez-Díaz, C. Mingotaud, J. F. Stoddart, Adv. Mater., 18, 1291 (2006) and references therein http://dx.doi.org/10.1002/adma.20050226510.1002/adma.200502265Search in Google Scholar

[97] A. N. Shipway, I. Willner, Acc. Chem. Res., 34, 421 (2001) http://dx.doi.org/10.1021/ar000180h10.1021/ar000180hSearch in Google Scholar PubMed

[98] R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, B. L. Feringa, Nature, 437, 1337 (2005) http://dx.doi.org/10.1038/nature0412710.1038/nature04127Search in Google Scholar PubMed

[99] M. M. Pollard, M. Lubomska, P. Rudolf, B. L. Feringa, Angew. Chem. Int. Ed., 46, 1278 (2007) http://dx.doi.org/10.1002/anie.20060361810.1002/anie.200603618Search in Google Scholar PubMed

[100] T. J. Huang, H.-R. Tseng, L. Sha, W. X. Lu, B. Brough, A. H. Flood, B. D. Yu, P. C. Celestre, J. P. Chang, J. F. Stoddart, C. M. Ho, Nano Lett., 4, 2065 (2004) http://dx.doi.org/10.1021/nl035099x10.1021/nl035099xSearch in Google Scholar

[101] M. Cavallini, F. Biscarini, S. Leon, F. Zerbetto, G. Bottari, D. A. Leigh, Science, 299, 531 (2003) http://dx.doi.org/10.1126/science.107801210.1126/science.1078012Search in Google Scholar PubMed

[102] R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature, 440, 163 (2006) http://dx.doi.org/10.1038/440163a10.1038/440163aSearch in Google Scholar PubMed

[103] I. Aprahamian, T. Yasuda, T. Ikeda, S. Saha, W. R. Dichtel, K. Isoda, T. Kato, J. F Stoddart, Angew. Chem. Int. Ed., 46, 4675 (2007) http://dx.doi.org/10.1002/anie.20070030510.1002/anie.200700305Search in Google Scholar PubMed

[104] E. D. Baranoff, J. Voignier, T. Yasuda, V. Heitz, J.-P. Sauvage, T. Kato, Angew. Chem. Int. Ed., 46, 4680 (2007) http://dx.doi.org/10.1002/anie.20070030810.1002/anie.200700308Search in Google Scholar PubMed

[105] D. Pijper, B. L. Feringa, Angew. Chem. Int. Ed., 46, 3693 (2007) http://dx.doi.org/10.1002/anie.20060494110.1002/anie.200604941Search in Google Scholar PubMed

[106] A. Koçer, M. Walko, W. Meijberg, B. L. Feringa, Science, 309, 755 (2005) http://dx.doi.org/10.1126/science.111476010.1126/science.1114760Search in Google Scholar PubMed

[107] M. Álvaro, B. Ferrer, H. García, E. J. Palomares, V. Balzani, A. Credi, M. Venturi, J. F. Stoddart, S. Wenger, J. 2003Phys. Chem. B, 107, 14319 (2003) http://dx.doi.org/10.1021/jp034844r10.1021/jp034844rSearch in Google Scholar

[108] J. Berná, D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M. Pérez, P. Rudolf, G. Teobaldi, F. Zerbetto, Nat. Mater., 4, 704 (2005) http://dx.doi.org/10.1038/nmat145510.1038/nmat1455Search in Google Scholar PubMed

[109] Y. Liu, A. H. Flood, P. A. Bonvallet, S. A. Vignon, B. H. Northrop, H.-R. Tseng, J. O. Jeppesen, T. J. Huang, B. Brough, M. Baller, S. Magonov, S. D. Solares, W. A. Goddard, C. M. Ho, J. F. Stoddart, J. Am. Chem Soc., 127, 9745 (2005) http://dx.doi.org/10.1021/ja051088p10.1021/ja051088pSearch in Google Scholar PubMed

Published Online: 2008-8-11
Published in Print: 2008-9-1

© 2008 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow