Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 11, 2008

Sol-gel preparation and characterization of non-substituted and Sr-substituted lanthanum cobaltates

Sigute Cizauskaite EMAIL logo and Aivaras Kareiva
From the journal Open Chemistry


This paper reports on the results concerning the sol-gel preparation and characterization of Sr-substituted perovskite lanthanum cobaltates La1−xSrxCoO3−δ (x = 0.0, 0.25, 0.5 and 0.75). The metal ions, generated by dissolving starting materials in diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the non-substituted and Sr-substituted LaCoO3. The influence of the synthesis temperature, heating time and the amount of substituent on the phase purity of La1−xSrxCoO3−δ were investigated. The phase transformations, composition and micro-structural features in the gels and polycrystalline samples were studied by thermal analysis (TG/DTA), infrared spectroscopy (IR), powder X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM).

[1] F.S. Galasso, Perovskites and High Tc Superconductors, Gordon and Breach Science Publishers, New York, 1990 Search in Google Scholar

[2] E.J. Baran, Catal. Today 8, 133 (1990) in Google Scholar

[3] L.B. Archer, C.D. Chandler, R. Kingsborough, M.J. Hampden-Smith, J. Mater. Chem. 5, 151 (1995) in Google Scholar

[4] A.S. Bhalla, R. Guo, R. Roy, Mater. Res. Innov. 4, 3 (2000) in Google Scholar

[5] J.P. Attfield, Int. J. Inorg. Mater. 3, 1147 (2001) in Google Scholar

[6] M. Chroma, J. Pinkas, I. Pakutinskiene, A. Beganskiene, A. Kareiva, Ceram. Int. 31, 1123 (2005) in Google Scholar

[7] M. Retuerto, J.A. Alonso, M.J. Martinez-Lope, N. Menedez, J. Tornero, M. Garcia-Hernandez, J. Mater. Chem. 16, 865 (2006) in Google Scholar

[8] J. Zylberberg, Z.-G. Ye, J. Appl. Phys. 100, 086102 (2006) in Google Scholar

[9] G. Thornton, B.C. Tofield, A.W. Hewat, J. Solid State Chem. 61, 301 (1986) in Google Scholar

[10] J.C. Walmsley, A. Bardal, K. Kleveland, M.-A. Einarsrud, T. Grande, J. Mater. Sci. 35, 4251 (2000) in Google Scholar

[11] J.A. Alonso, M.J. Martinez-Lope, C. de la Calle, V. Pomjakushin, J. Mater. Chem. 16, 1555 (2006) in Google Scholar

[12] N.V. Minh, I.-S. Yang, Vibr. Spectrosc. 42, 353 (2006) in Google Scholar

[13] M. Cherry, M.S. Islam, C.R.A. Catlow, J. Solid State Chem. 118, 125 (1995) in Google Scholar

[14] C.H. Chen, H. Kruidhof, H.J.M. Bouwmeester, A.J. Burggraaf, J. Appl. Electrochem. 27, 71 (1997) in Google Scholar

[15] A.A. Yaremchenko, V.V. Kharton, A.P. Viskup, E.N. Naumovich, V.N. Tikhonovich, N.M. Lapchuk, Solid State Ionics 120, 65 (1999) in Google Scholar

[16] N. Orlovskaya, D. Ge, A. Nicholls, Key Eng. Mater. 206-213, 1321 (2002) in Google Scholar

[17] B. Kucharczyk, W. Tylus, Catal. Today 90, 121 (2004) in Google Scholar

[18] A. Kahoul, A. Hammouche, G. Poillerat, R.W. De Doncker, Catal. Today 89, 287 (2004) in Google Scholar

[19] A. Patil, S. Dash, S.C. Parida, V. Venugopal, J. All. Comp. 384, 274 (2004) in Google Scholar

[20] Z.Q. Deng, W. Liu, C.S. Chen, H. Lu, W.S. Yang, Solid State Ionics 170, 187 (2004) in Google Scholar

[21] G.W. Chadzynski, D. Sternik, P. Staszczuk, B. Kucharczyk, J. Therm. Anal. Calorim. 78, 441 (2004) in Google Scholar

[22] A. Weidenkaff, R. Robert, M. Aguirre, L. Bocher, T. Lippert, S. Canulescu, Renewable Energy 33, 342 (2008) in Google Scholar

[23] J.L. Routbort, R. Doshi, M. Krumpelt, Solid State Ionics 90, 21 (1996) in Google Scholar

[24] H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics 100, 283 (1997) in Google Scholar

[25] S.B. Adler, Solid State Ionics 111, 111 (1998) in Google Scholar

[26] R.H.E. van Doorn, A.J. Burggraaf, Solid State Ionics 128, 65 (2000) in Google Scholar

[27] S.J. Skinner, Int. J. Inorg. Mater. 3, 113 (2001) in Google Scholar

[28] V.G. Prokhorov, Y.P. Lee, K.W. Kim, G.G. Kaminsky, V.M. Ishchuk, I.N. Chukanova, Mater. Sci. Forum 373-376, 605 (2001) 10.4028/ in Google Scholar

[29] G.S. Wang, X.J. Meng, Z.Q. Lai, J. Yu, J.L. Sun, J.G. Cheng, J. Tang, S.L. Guo, J.H. Chu, Appl. Phys. A 73, 1 (2001) Search in Google Scholar

[30] A.V. Kovalevsky, V.V. Kharton, V.N. Tikhonovich, E.N. Naumovich, A.A. Tonoyan, O.P. Reut, L.S. Boginsky, Mater. Sci. Eng. B 52, 105 (1998) in Google Scholar

[31] V.V. Kharton, A.A. Yaremchenko, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, P.F. Kerko, J. Membr. Sci. 163, 307 (1999) in Google Scholar

[32] M. Sogaard, P.V. Hendriksen, M. Mogensen, F.W. Poulsen, E. Skou, Solid State Ionics 177, 3285 (2006) in Google Scholar

[33] K. Asai, O. Yokokura, N. Nishimori, H. Chou, J.M. Tranquada, G. Shirane, S. Higuchi, Y. Okajima, K. Kohn, Phys. Rev. B 50, 3025 (1994) in Google Scholar

[34] M.A. Senaris-Rodriguez, J.B. Goodenough, J. Solid State Chem. 118, 323 (1995) in Google Scholar

[35] S. Mukherjee, R. Ranganathan, P.S. Anikumar, P.A. Joy, Phys. Rev. B 54, 9367 (1996) in Google Scholar

[36] P.S. Anil Kumar, P.A. Joy, S.K. Date, J. Phys.: Condens. Matter 10, L487 (1998) in Google Scholar

[37] D.N.H. Nam, K. Jonason, P. Nordblad, N.V. Khiem, N.X. Phuc, Phys. Rev. B 59, 4189 (1998) in Google Scholar

[38] R. Caciuffo, D. Rinaldi, G. Barucca, J. Mira, J. Rivas, M.A. Senaris-Rodriguez, P.G. Radaelli, D. Fiorani, J.B. Goodenough, Phys. Rev. B 59, 1068 (1999) in Google Scholar

[39] J. Mira, J. Rivas, M. Vazquez, J.M. Garcia-Beneytez, J. Arcas, R.D. Sanchez, M.A. Senaris-Rodriguez, Phys. Rev. B 59, 123 (1999) in Google Scholar

[40] R. Ganguly, I.K. Gopalakrishnan, J.V. Yakhmi, Physica B 271, 116 (1999) in Google Scholar

[41] S. Chaudhary, S.B. Roy, P. Chaddah, J. All. Comp. 326, 112 (2001) in Google Scholar

[42] M. James, D. Cassidy, D.J. Goossens, R.L. Withers, J. Solid State Chem. 177, 1886 (2004) in Google Scholar

[43] J. Livage, M. Henry, C. Sanchez, J. Solid State Chem. 18, 259 (1988) in Google Scholar

[44] C.J. Brinker, G.W. Scherrer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press, New York, 1990 Search in Google Scholar

[45] C. Sanchez, G.J.D.A.A. Soler-Illia, F. Ribot, D. Grosso, J. C. R. Chimie 6, 1131 (2003) 10.1016/j.crci.2003.06.001Search in Google Scholar

[46] B.L. Cushing, V.L. Kolesnichenko, C.J. O`Connor, Chem. Rev. 104, 3893 (2004) in Google Scholar

[47] J.D. Mackenzie, E.P. Bescher, Acc. Chem. Res. 40, 810 (2007) in Google Scholar

[48] T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, K. Fueki, J. Solid State Chem. 73, 179 (1988) in Google Scholar

[49] Z.L. Wang, J. Zhang, Phil. Mag. A 72, 1513 (1995) in Google Scholar

[50] A. Wold, R. Ward, Notes 30, 1029 (1954) 10.1021/ja01633a031Search in Google Scholar

[51] M. Matsuda, K. Ihara, M. Miyake, Solid State Ionics 172, 57 (2004) in Google Scholar

[52] F.J. Berry, J.R. Gancedo, J.F. Marco, X. Ren, J. Solid State Chem. 177, 2101 (2004) in Google Scholar

[53] A.N. Jain, S.K. Tiwari, R.N. Singh, P. Chartier, J. Chem. Soc.-Faraday Transac. 91, 1871 (1995) in Google Scholar

[54] T. Vaz, A.V. Salker, Mater. Sci. Eng. B 143, 81 (2007) in Google Scholar

[55] S. Faaland, T. Grande, M.-A. Einarsrud, P.E. Vullum, R. Holmestad, J. Am. Ceram. Soc. 88, 726 (2005) in Google Scholar

[56] M. Wallin, N. Cruise, U. Klement, A. Palmqvist, M. Skoglundh, Coll. Surf. A: Physicochem. Eng. Aspects 238, 27 (2004) in Google Scholar

[57] W. Chen, F. Li, J. Yu, Mater. Lett. 61, 397 (2007) in Google Scholar

[58] A. Baykal, N. Kasapoglu, Y. Koseoglu, A.C. Basarab, H. Kavas, M.S. Toprak, Cent. Eur. J. Chem. 6, 125 (2008) in Google Scholar

[59] L. Huang, M. Bassir, S. Kaliaguine, Mater. Chem. Phys. 101, 259 (2007) in Google Scholar

[60] N. Orlovskaya, K. Kleveland, T. Grande, M.-A. Einarsrud, J. Eur. Ceram. Soc. 20, 51 (2000) in Google Scholar

[61] C.R. Dyck, Z.B. Yu, V.D. Krstic, Solid State Ionics 171, 17 (2004) in Google Scholar

[62] E. Garskaite, K. Gibson, A. Leleckaite, J. Glaser, D. Niznansky, A. Kareiva, H.-J. Meyer, Chem. Phys. 323, 204 (2006) in Google Scholar

[63] A. Zalga, A. Beganskiene, A. Kareiva, Polish J. Chem. 81, 1547 (2007) Search in Google Scholar

[64] A. Katelnikovas, J. Barkauskas, F. Ivanauskas, A. Beganskiene, A. Kareiva, J. Sol-Gel Sci. Techn. 41, 193 (2007) in Google Scholar

[65] S. Cizauskaite, V. Reichlova, G. Nenartaviciene, A. Beganskiene, J. Pinkas, A. Kareiva, Mater. Chem. Phys. 102, 105 (2007) in Google Scholar

[66] A. Katelnikovas, T. Justel, D. Uhlich, J.-E. Jorgensen, S. Sakirzanovas, A. Kareiva, Chem. Eng. Comm. 195, 758 (2008) in Google Scholar

[67] A. Katelnikovas, A. Kareiva, Mater. Lett. 62, 1655 (2008) in Google Scholar

[68] K. Nakanishi, Infrared Absorption Spectroscopy (Holden Day, San Francisco, (1977) Search in Google Scholar

[69] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley and Sons, New York, 1986) Search in Google Scholar

[70] B. Schrader, Infrared and Raman Spectroscopy. Methods and Applications (VCH, Weinheim, 1995) 10.1002/9783527615438Search in Google Scholar

[71] S. Cizauskaite, V. Reichlova, G. Nenartaviciene, A. Beganskiene, J. Pinkas, A. Kareiva, Mater. Sci.-Poland 25, 755 (2007) Search in Google Scholar

Published Online: 2008-8-11
Published in Print: 2008-9-1

© 2008 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.12.2022 from
Scroll Up Arrow