Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 28, 2008

Study of multiblock polyamide-6/Poly-(isoprene) copolymers by positron annihilation spectroscopy

R. Bryaskova, R. Mateva, N. Djourelov and M. Krasteva
From the journal Open Chemistry


Positron annihilation lifetime spectroscopy (PALS) has been used to determine the free volume in multiblock polyamide-6/poly-(isoprene) copolymers (PA-6/PI), synthesized via activated anionic bulk copolymerization. The diisocyanate functionalized telechelic PI, blocked with caprolactam (CL) has been used as a commoner and an activator at the same time. The elastic PI block incorporated into the main chain of PA-6 affects the amorphous and crystal phase of the copolymer leading to changing in degree of crystallinity. The positron annihilation lifetime spectroscopy (PAL) and Doppler broadening of annihilation line (DBAL) technique in a set of pure PA-6 and PA-6/PI copolymers with two different compositions have been applied and evaluation of the size of free-volume holes (pores), localized mainly in the disordered regions of the PA-6/PI copolymer by measuring the o-Ps lifetime (τ3) and o-Ps intensity (I3) has been performed.

[1] Y.C. Jean, Mat. Sci. Forum 59, 175 (1995) 10.4028/ in Google Scholar

[2] H. Nakanishi, S.J. Wang and Y.C. Jean, Ed S.G. Sharma, Positron Annihilation Study of Fluids (Singapure, World Scientific 1987) 292 Search in Google Scholar

[3] Y.C. Jean, Microchem. J. 42, 72 (1990) in Google Scholar

[4] B.D. Malhorta, R.A. Pethrick, Macromolecules 16, 1175 (1983) in Google Scholar

[5] Y. Kobayashi, W. Zheng, E.F. Meyer, J.D. McGervey, A.M. Jamieson, R. Simha Macromolecules 22, 2302 (1989) in Google Scholar

[6] G. Dlubek, M. Stolp, Ch. Nagel, H.M. Fretwell, M.A. Alam, H.J. Radusch, J. Phys. Condens. Matter 10, 10443 (1998) in Google Scholar

[7] J. Brozek, J. Roda, J. Kralichek, Makromol. Chem. 189, 17 (1988) in Google Scholar

[8] Z. Mitov, R. Velichkova, Eur. Polym. J. 28(7), 771 (1992) in Google Scholar

[9] Quirk, J. Ma, J. Pol. Sci. Pol. Chem. 26, 2031 (1988) in Google Scholar

[10] R. Mateva, R. Filyanova, R. Velitchkova, V. Gancheva, Journal of Polymer Science: Part A: Polymer Chemistry, 41, 487 (2003) in Google Scholar

[11] M.S. Aharoni, n-Nylons: Their Synthesis, Structure and Properties (Chichester, John Wiley and Sons Ltd, 1997) 300 Search in Google Scholar

[12] N. Djourelov, M. Misheva, J. Phys. Cond. Matter. 8, 2081 (1996) in Google Scholar

[13] P. Kirkegaard, N.J. Pedersen, M. Eldrup, PATFIT-88 (Risoe Natl. Lab., Roskilde, Denmark, 1989) Search in Google Scholar

[14] S.W. Provencher, Comp. Phys. Commun. 27, 229 (1982) in Google Scholar

[15] R. Gregory, J. Appl. Phys. 70, 4665 (1991) in Google Scholar

[16] K. Suvegh, A. Vertes, T. Hyodo, Adv. Mol. Struct. Res. 5, 313 (1999) Search in Google Scholar

[17] H.A. Hristov, B. Bolan, A.F. Yee, L. Xie, D.W. Gidley, Macromolecules 209, 8507 (1996) in Google Scholar

[18] Frans H.J. Maurer, Marcus Schmidt, Rad. Phys. Chem. 58, 509 (2000) in Google Scholar

[19] L. Liszkay, C. Corbel, L. Baroux, P. Hautojarvi, A.W. Brinkman, S. Tatarenko, Appl. Phys. Lett. 64, 1380 (1994) in Google Scholar

[20] A. Baranowski, M. Kosrezewa, M. Szuszkiewcz, Acta Physica Polonica, A99, 329 (2001) 10.12693/APhysPolA.99.329Search in Google Scholar

[21] M. Misheva, N. Djourelov, F.M.A. Margaca, Salvado I.M. Miranda, J. Non Cryst. Sil. 279, 196 (2001) in Google Scholar

[22] M. Eldrup, D. Lightbody, J.N. Sherood, Chem. Phys. 63, 51 (1982) in Google Scholar

[23] S.J. Tao, J. Chem. Phys. 56, 5499 (1972) in Google Scholar

Published Online: 2008-10-28
Published in Print: 2008-12-1

© 2008 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow