Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 23, 2008

Estimation of platinum in environmental water samples with solid phase extraction technique using inductively coupled plasma mass spectrometry

Aleksandra Dubiella-Jackowska, Żaneta Polkowska, Lech Dariusz, Piotr Pasławski, Wojciech Staszek and Jacek Namieśnik
From the journal Open Chemistry


A solid phase extraction technique for the determination of platinum(IV) at trace levels by inductively coupled plasma mass spectromA solid phase extraction technique for the determination of platinum(IV) at trace levels by inductively coupled plasma mass spectrometry (ICP-MS) was developed. The method was based on retention of platinum in a sample on silica gel modified with aminepropyl groups. The retention of platinum(IV) from the sample solution and the recovery of platinum with 1.0 mol L−1 thiourea solution were quantitative. The relative standard deviation (RSD) was calculated as 5% (n = 7) at the 10 ng L−1 level. The enrichment factor was found to be (50-fold) for 250 mL of water sample. Under optimum conditions, the method detection limit (MDL) was found to be 1 ng L−1 for platinum in water matrices. Recoveries of Pt from spike addition to atmospheric water samples were quantitative (80–95%). The present method was used for the determination of platinum in precipitation, throughfall and runoff water samples.

[1] M. Moldovan, Anal. Bioanal. Chem. 388, 537 (2007) in Google Scholar

[2] K. Ravindra, L. Bencs, R. Van Grieken, Sci. Total Environ. 318, 1 (2004) in Google Scholar

[3] K.H. Ek, G.M. Morrison, S. Rauch, Sci. Total Environ. 334, 21 (2004) in Google Scholar

[4] C.H. Bartholomew, Catalyst deactivation and regeneration. In: Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc, 2004) 10.1002/0471238961.1415021218150209.a01.pub2Search in Google Scholar

[5] C.H. Bartholomew, Appl. Catal. A 212, 17 (2001) 10.1016/S0926-860X(00)00843-7Search in Google Scholar

[6] M. Bojanowska, Acta Agrophys. 5, 535 (2005) (in Polish) Search in Google Scholar

[7] M. Kolodziej, I. Baranowska, A. Matyja, Electroanal. 19, 1585 (2007) in Google Scholar

[8] N. Haus, S. Zimmermann, J. Wiegand, B. Sures, Chemosphere 66, 619 (2007) in Google Scholar

[9] A. Limbeck, C. Puls, M. Handler, Environ. Sci. Technol. 41, 4938 (2007) in Google Scholar

[10] F. Petrucci, N. Violante, O. Senofonte, M. De Gregorio, A. Alimonti, S. Caroli, G. Forte, A. Cristaudo, Microchem. J. 76, 131 (2004) in Google Scholar

[11] E.H. Ivanova, G.D. Gentscheva, Bulg. Chem. Commun. 32, 191 (2000) Search in Google Scholar

[12] L. Bencs, K. Ravindra, R. Van Grieken, Spectrochim. Acta B 58, 1723 (2003) in Google Scholar

[13] M. Hallberg, G. Renman, T. Lundbom, Wat. Air Soil Pollut. 181, 183 (2007) in Google Scholar

[14] B. Godlewska-Żyłkiewicz, Mikrochim. Acta 147, 189 (2004) 10.1007/s00604-004-0234-2Search in Google Scholar

[15] D. Laschka, T. Striebel, J. Daub, M. Nachtwey, UWSF- Z Umweltchem. Ökotox. 8, 124 (1996) (in German) in Google Scholar

[16] C.R.M. Rao, G.S. Reddi, Trends Anal. Chem. 19, 565 (2000) in Google Scholar

[17] M. Moldovan, M.M. Gómez, M.A. Palacios, Anal. Chim. Acta 478, 209 (2003) in Google Scholar

[18] H. Obata, T. Yoshida, H. Ogawa, Anal. Chim. Acta 580, 32 (2006) in Google Scholar

[19] G.V. Myasoedova, O.B. Mokhodoeva, I.V. Kubrakova, Anal. Sci. 23, 1031 (2007) in Google Scholar

[20] M. Brzezicka, I. Baranowska, Spectrochim. Acta B 56, 2513 (2001) in Google Scholar

[21] B.L. Gong, Y. Wang, Anal. Bioanal. Chem. 372, 597 (2002) in Google Scholar

[22] X. Chang, Z. Su, D. Yang, B. Gong, Q. Pu, S. Li, Anal. Chim. Acta 354, 143 (1997) in Google Scholar

[23] A.G. Coedo, M.T. Dorado, I. Padilla, F. Alguacil, Anal. Chim. Acta 340, 31 (1997) in Google Scholar

[24] M. Muzikar, C. Fontas, M. Hidalgo, T. Havel, V. Salvadó, Talanta 70, 1081 (2006) in Google Scholar

[25] A. Tunceli, Anal. Sci. 16, 81 (2000) in Google Scholar

[26] L. Elci, M. Soylak, E.B. Buyuksekerci, Anal. Sci. 19, 1621 (2003) in Google Scholar

[27] P. Kovacheva, R. Djingova, Anal. Chim. Acta 464, 7 (2002) in Google Scholar

[28] G.V. Myasoedova, E.A. Zaharchenko, O.B. Mokhodoeva, I.V. Kubrakova, V.A. Nikashina, Russ. J. Anal. Chem. 59, 536 (2004) 10.1023/B:JANC.0000030873.88087.f0Search in Google Scholar

[29] L. Chunsheng, C. Chifang, Y. Xuefeng, H. Xiaolin, M. Xueying, Talanta 44, 1313 (1997) in Google Scholar

[30] A. Cantarero, M. M. Gomez, C. Camara, M. A. Palacios, Anal. Chim. Acta 296, 205 (1994) in Google Scholar

[31] F.S. Rojas, C.B. Ojeda, J.M.C. Pavon, J. Flow Inject. Anal. 21, 128 (2004) Search in Google Scholar

[32] R. Vlasankova, V. Otruba, J. Bendl, M. Fisera, V. Kanicky, Talanta 48, 839 (1999) in Google Scholar

[33] Q. Pu, Z. Su, Z. Hu, X. Chang, M. Yang, J. Anal. At. Spectrom. 13, 249 (1998) in Google Scholar

[34] V. Camel, Spectrochim. Acta B 58, 1177 (2003) in Google Scholar

[35] F. E. Beamish, The Analytical Chemistry of the Noble Metals (Pergamon Press, Oxford, 1966) Search in Google Scholar

[36] J. Korkisch, Handbook of Ion Exchange Resins: Their Application to Inorganic Analytical Chemistry (CRC Press, Boca Raton, 1989) 10.1016/S0003-2670(00)83364-4Search in Google Scholar

[37] P. Kovacheva, R. Djingova, Anal. Chim. Acta 464, 7 (2002) in Google Scholar

[38] T. Meisel, J. Moser, N. Fellner, W. Wegscheider, Analyst 126, 322 (2001) in Google Scholar PubMed

[39] U. Dziwulska, A. Bajguz, B. Godlewska-Żyłkiewicz, Anal. Lett. 37, 2189 (2004) in Google Scholar

[40] Z. Fan, Chem. J. Internet 6 (2004), Search in Google Scholar

[41] T. Schilling, P. Schramel, B. Michalke, G. Knapp, Microchim. Acta 124, 235 (1996) in Google Scholar

[42] J. Kowalska, M. Asztemborska, B. GodlewskaŻyłkiewicz, J. Golimowski, Microchim. Acta 150, 55 (2005) in Google Scholar

[43] B. Godlewska-Żyłkiewicz, Anal. Bioanal. Chem. 372, 593 (2002) in Google Scholar PubMed

Published Online: 2008-12-23
Published in Print: 2009-3-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow