Abstract
The effects of doping with CeO2 and calcination temperature on the physicochemical properties of the NiO/Al2O3 system have been investigated using DTA, XRD, nitrogen adsorption measurements at −196°C and decomposition of H2O2 at 30–50°C. The pure and variously doped solids were subjected to heat treatment at 300, 400, 700, 900 and 1000°C. The results revealed that the specific surface areas increased with increasing calcination temperature from 300 to 400°C and with doping of the system with CeO2. The pure and variously doped solids calcined at 300 and 400°C consisted of poorly crystalline NiO dispersed on γ-Al2O3. Heating at 700°C resulted in formation of well crystalline NiO and γ-Al2O3 phases beside CeO2 for the doped solids. Crystalline NiAl2O4 phase was formed starting from 900°C. The degree of crystallinity of NiAl2O4 increased with increasing the calcination temperature from 900 to 1000°C. An opposite effect was observed upon doping with CeO2. The NiO/Al2O3 system calcined at 300 and 400°C has catalytic activity higher than individual NiO obtained at the same calcination temperatures. The catalytic activity of NiO/Al2O3 system increased, progressively, with increasing the amount of CeO2 dopant and decreased with increasing the calcination temperature.
[1] M.A.A. El-Masry, A. Gaber, E.M.H. Khater, J. Therm. Anal. 52, 489 (1998) http://dx.doi.org/10.1023/A:101015520324710.1023/A:1010155203247Search in Google Scholar
[2] T. Nissinen, M. Leskelä, M. Gasik, J. Lamminen, Thermochim. Acta 427, 155 (2004) http://dx.doi.org/10.1016/j.tca.2004.09.00510.1016/j.tca.2004.09.005Search in Google Scholar
[3] J. Estelle, P. Salagre, Y. Cesteros, M. Serra, F. Medina, J.E. Sueiras, Solid State Ionics 156, 233 (2003) http://dx.doi.org/10.1016/S0167-2738(02)00612-410.1016/S0167-2738(02)00612-4Search in Google Scholar
[4] W. Brockner, C. Ehrhardt, M. Gjikaj, Thermochim. Acta 456, 64 (2007) http://dx.doi.org/10.1016/j.tca.2007.01.03110.1016/j.tca.2007.01.031Search in Google Scholar
[5] G.A. Fagal, G.A. El-Shobaky, S.M. El-Khouly, Colloid Surf. A 178, 287 (2001) http://dx.doi.org/10.1016/S0927-7757(00)00710-X10.1016/S0927-7757(00)00710-XSearch in Google Scholar
[6] A.A. Zahran, W.M. Shaheen, G.A. El-Shobaky, Mat. Res. Bull. 40, 1065 (2005) http://dx.doi.org/10.1016/j.materresbull.2005.04.00310.1016/j.materresbull.2005.04.003Search in Google Scholar
[7] V. Múčka, S. Tabačík, Rad. Phys. Chem. 38,3, 285 (1991) 10.1016/1359-0197(91)90094-ISearch in Google Scholar
[8] W.M. Shaheen, A.A. Zahran, G.A. El-Shobaky, Colloid Surf. A 231, 51 (2003) http://dx.doi.org/10.1016/j.colsurfa.2003.06.00110.1016/j.colsurfa.2003.06.001Search in Google Scholar
[9] H.G. El-Shobaky, S.A.H. Ali, N.A. Hassan, Mater. Sci. Eng. B 143, 21 (2007) http://dx.doi.org/10.1016/j.mseb.2007.07.07210.1016/j.mseb.2007.07.072Search in Google Scholar
[10] G.A. El-Shobaky, F.M. Radwan, A.M. Turky, A. Abdel-Momen, Adsorb. Sci. Technol. 19,10, 779 (2001) http://dx.doi.org/10.1260/026361701149458310.1260/0263617011494583Search in Google Scholar
[11] H. Li, J.F. Ding, Appl. Cat. A 193, 9 (2000) http://dx.doi.org/10.1016/S0926-860X(99)00422-610.1016/S0926-860X(99)00422-6Search in Google Scholar
[12] S. Velu, C.S. Swamy, J. Catal. 153, 304 (1997) Search in Google Scholar
[13] C. Cellier, B. Blangy, C. Mateos-Pedrero, P. Ruiz, Catal.Today, 112, 112 (2006) http://dx.doi.org/10.1016/j.cattod.2005.11.05410.1016/j.cattod.2005.11.054Search in Google Scholar
[14] G.A. El-Shobaky, M.M. Doheim, A.M. Ghozza, Rad. Phys. Chem. 69, 31 (2004) http://dx.doi.org/10.1016/S0969-806X(03)00444-410.1016/S0969-806X(03)00444-4Search in Google Scholar
[15] F. Patcas, D. Hönicke, Catal. Comm. 6, 23 (2005) http://dx.doi.org/10.1016/j.catcom.2004.10.00510.1016/j.catcom.2004.10.005Search in Google Scholar
[16] X. Zhang, J. Liu, Y. Jing, Y. Xie, Appl. Cat. A 240, 143 (2003) http://dx.doi.org/10.1016/S0926-860X(02)00426-X10.1016/S0926-860X(02)00426-XSearch in Google Scholar
[17] T.N. Angelidis, M. Papapetrou, Stud. Surf. Sci. Catal. 133, 131 (2001) http://dx.doi.org/10.1016/S0167-2991(01)81955-810.1016/S0167-2991(01)81955-8Search in Google Scholar
[18] X. Chen, K. Honda, Z. Zhang, Appl. Cat. A 288, 86 (2005) http://dx.doi.org/10.1016/j.apcata.2005.04.03710.1016/j.apcata.2005.04.037Search in Google Scholar
[19] S. Xu, X. Yan, X. Wang, Fuel 85, 2243 (2006) http://dx.doi.org/10.1016/j.fuel.2006.03.02210.1016/j.fuel.2006.03.022Search in Google Scholar
[20] P. Fornasiero et al., J. Catal. 151, 168 (1995) http://dx.doi.org/10.1006/jcat.1995.101910.1006/jcat.1995.1019Search in Google Scholar
[21] B.D. Cullity, Elements of X-Ray Diffraction, 3rd edition (Addison-Wesley, Reading, MA, 1967) Search in Google Scholar
[22] W.M. Shaheen, M.M. Selim, Thermochim. Acta 322, 117 (1998) http://dx.doi.org/10.1016/S0040-6031(98)00486-910.1016/S0040-6031(98)00486-9Search in Google Scholar
[23] W.M. Shaheen, K.S. Hong, Thermochim. Acta 381, 153 (2002) http://dx.doi.org/10.1016/S0040-6031(01)00652-910.1016/S0040-6031(01)00652-9Search in Google Scholar
[24] W. Zheng, J. Zhang, Q. Ge, H. Xu, W. Li, Appl. Catal. B 80, 98 (2008) http://dx.doi.org/10.1016/j.apcatb.2007.11.00810.1016/j.apcatb.2007.11.008Search in Google Scholar
[25] G.R. Rao, H.R. Sahu, B.G. Mishra, Colloid Surf. A 220, 261 (2003) http://dx.doi.org/10.1016/S0927-7757(03)00080-310.1016/S0927-7757(03)00080-3Search in Google Scholar
[26] Y.S. Han, J.B. Li, X.S. Ning, X.Z. Yang, B. Chi, Mater. Sci. Eng. A 369, 241 (2004) http://dx.doi.org/10.1016/j.msea.2003.11.02610.1016/j.msea.2003.11.026Search in Google Scholar
© 2009 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.