Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 25, 2010

Qualitative and quantitative analysis of gallic acid in Alchemilla vulgaris, Allium ursinum, Acorus calamus and Solidago virga-aurea by chip-electrospray ionization mass spectrometry and high performance liquid chromatography

  • Dumitru Condrat EMAIL logo , Cristina Mosoarca , Alina Zamfir , Florin Crişan , Maria Szabo and Alfa Lupea
From the journal Open Chemistry


This study presents the results obtained from qualitative and quantitative analysis of gallic acid from hydro-alcoholic extracts (methanol, ethanol) of plants from Plantae regnum. Plant qualitative analysis was performed using a novel mass spectrometric (MS) method based on fully automated chip-nanoelectrospray ionization (nanoESI) high capacity ion trap (HCT) while quantitative analysis was carried out by high performance liquid chromatography (HPLC). These methods were applied to Alchemilla vulgaris — common lady’s-mantle (aerial part), Allium ursinum — bear’s garlic (leaves), Acorus calamus — common sweet flag (roots), Solidago virga-aurea — goldenrod (aerial part). Obtained results indicated that methanol extracts (96%, 80%) have a gallic acid content ranging between 0.0011–0.0576 mg mL−1 extract while the ethanol extracts (96%, 60%) exhibit a gallic acid concentration that varies between 0.0010–0.0182 mg mL−1 extract.

[1] P. Buzzini et al., Mini Rev. Med. Chem. 8, 1179, (2008) in Google Scholar

[2] J. Zhang, L. Li, S.H. Kim, A.E. Hagerman, J. Lü, Pharm. Res. 26, 2066, (2009) in Google Scholar

[3] S.Z. Choi, S.U. Choi, S.Y. Bae, S. Pyo, K.R. Lee, Arch. Pharm. Res. 28, 49, (2005) in Google Scholar

[4] H. Kim, T.H. Han, S.G. Lee, J. Ethnopharmacol. 122, 149, (2009) in Google Scholar

[5] S. Moco, B. Schneider, J. Vervoort, J. Proteome Res. 8, 1694, (2009) in Google Scholar

[6] N. Nakatani, J. Food Sci. 3447 (2002) Search in Google Scholar

[7] N. Morita, M. Arisawa, Heterocycles 4, 373 (1976) in Google Scholar

[8] A.D. Zamfir, J. Chromatogr. A 2, 1159, (2007) 10.1016/j.chroma.2007.03.115Search in Google Scholar

[9] B. Suarez, J. Agric. Food. Chem. 42, 2732, (1994) in Google Scholar

[10] J. Daigle, E.J. Conkerton, J. Chromatogr. 24, 262 (1982) 10.1515/mt-1982-240712Search in Google Scholar

[11] P. Mämmelä, H. Savolainen, L. Lindroos, J. Kangas, T. Vartiainen, J. Chromatogr. A 891, 75, (2000) in Google Scholar

[12] H.D. Graham, Food Chemistry 40, 801 (1992) in Google Scholar

[13] A.E. Hagerman, M.E. Rice, N.T. Richard, J. Agric. Food. Chem., 46, 2590 (1998) in Google Scholar

[14] R. Almeida et al., Anal. Biochem. 378, 43 (2008) in Google Scholar PubMed

[15] T. Visnapuu, A.D. Zamfir, C. Mosoarca, M.D. Stanescu, T. Alamäe, Rapid Commun. Mass Spectrom. 23, 1337, (2009) in Google Scholar PubMed

[16] A.D. Zamfir et al., Proteomics 9, 3435, (2009) in Google Scholar PubMed

[17] A. Serb, C. Schiopu, C. Flangea, E. Sisu, A.D. Zamfir. J. Mass Spectrom. 44, 1434, (2009) in Google Scholar PubMed

Published Online: 2010-4-25
Published in Print: 2010-6-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 5.6.2023 from
Scroll to top button