Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 25, 2010

Phenylcopper(I) clusters in the gas phase obtained by laser desorption/ionization from bis(dibenzoylmethane)copper(II)

Rafał Frański EMAIL logo , Tomasz Kozik , Bartosz Staniszewski and Włodzimierz Urbaniak
From the journal Open Chemistry


It has been demonstrated that phenylcopper(I)-containing clusters are generated in the gas phase from bis(dibenzoylmethane) copper(II) (Cu(dbm)2) by laser desorption/ ionization (LDI) method. For example, the [Cu5dbm2(C6H5)2]+ ion can be considered as consisting of two Cudbm molecules, two CuC6H5 molecules and a Cu+ cation. The [Cu5(C6H5)4]+ ion can be considered as phenylcopper(I) cluster (consisting of four phenylcopper molecules) ionized by additional Cu+ cation. Results from MS/MS (tandem mass spectrometry) experiments have confirmed the presence of phenylcopper molecules in the analyzed clusters. Ease of preparation of dibenzoylmethane-metal complexes and straightforward method to obtain LDI mass spectra offer a wide range of possibilities to study similar organometallic clusters in the gas phase.

[1] R.A.J. O’Hair, G.N. Khairallah, J. Clust. Sci. 15, 331 (2004) in Google Scholar

[2] J.S. McIndoe, Trans. Met. Chem. 28, 122 (2003) in Google Scholar

[3] P.J. Dyson, A.K. Hearley, B.F.G. Johnson, P.R.R. Langridge-Smith, J.S. McIndoe. Inorg. Chem. 43, 4962 (2004) in Google Scholar

[4] J.R. Gord, R.J. Bemish, B.S. Freiser, Int. J. Mass Spectrom. Ion Proc. 102, 115 (1990) in Google Scholar

[5] P.J. Dyson, A.K. Hearley, B.F.G. Johnson, J.S. McIndoe, P.R.R. Langridge-Smith, J. Clust. Sci. 12, 273 (2001) in Google Scholar

[6] W. Henderson, J.S. McIndoe, Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds (John Wiley & Sons, Ltd. Chichester, UK, 2005) in Google Scholar

[7] S.H. Bertz, G. Dabbagh, X. He, P.P. Power, J. Am. Chem. Soc. 115, 11640 (1993) in Google Scholar

[8] A. Cairncross, W.A. Sheppard, J. Am. Chem. Soc. 93, 247 (1971) in Google Scholar

[9] A. Cairncross, H. Omura, W.A. Sheppard, J. Am. Chem. Soc. 93, 248 (1971) in Google Scholar

[10] P.G. Edwards, R.W. Gellert, M.W. Marks R. Bau, J. Am. Chem. Soc. 104, 2072 (1982) in Google Scholar

[11] X. He, K. Ruhlandt-Senge, P.P. Power, S.H. Bertz, J. Am. Chem. Soc. 116, 6963 (1994) in Google Scholar

[12] B.-Q. Ma, S. Gao, Z.-M. Wang, C.-S. Liao, C.-H. Yan, G.-X. Xu J. Chem. Cryst. 29, 793 (1999) in Google Scholar

[13] J.Â.A. Campo et al., Helv. Chim. Acta 84, 2316 (2001)<2316::AID-HLCA2316>3.0.CO;2-Z10.1002/1522-2675(20010815)84:8<2316::AID-HLCA2316>3.0.CO;2-ZSearch in Google Scholar

[14] A. Hori, T. Arii, CrystEngComm 9, 215 (2007) in Google Scholar

[15] A. Hori, A. Shinohe, M. Yamasaki, E. Nishibori, S. Aoyagi, M. Sakata, Angew. Chem. Int. Ed. 46, 7617 (2007) in Google Scholar

[16] M.F. Wyatt, S. Havard, B.K. Stein, A.G Brenton, Rapid Commun. Mass Spectrom. 22, 11 (2008) in Google Scholar

[17] J.L. Pierce, K.L. Busch, R.G. Cooks, R.A. Walton, Inorg. Chem. 21, 2597 (1982) in Google Scholar

[18] J. Zhang, V. Frankevich, R. Knochenmuss, S.D. Friess, R. Zenobi, J. Am. Soc. Mass Spectrom. 14, 42 (2003) in Google Scholar

Published Online: 2010-4-25
Published in Print: 2010-6-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.1.2023 from
Scroll Up Arrow