Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 17, 2010

Facile preparation of graphite intercalation compounds in alkali solution

Jihui Li, Huiqing Shi, Ning Li, Mei Li and Jing Li
From the journal Open Chemistry

Abstract

Graphite intercalation compounds are often prepared by flake graphite, oxidants, inorganic acids, organic acids and intercalated ions which are usually hydrogen protons between the graphene planes. They are also known as the acid-treated graphite intercalation compounds. In this work, alkaline graphite intercalation compounds were prepared by flake graphite, K2Cr2O7, concentrated H2SO4 and NaOH, and the morphology and structure were characterized by Electron microscopy and X-ray techniques. The results display that the combination of neutralisation heat and oxidation capability produced by K2Cr2O7 can break the bonds to produce the spaces between the graphene planes and hydroxyl ions also intercalate into the graphene planes to form alkaline graphite intercalation compounds in alkali solution. The morphology and structure of alkaline graphite intercalation compounds are analogous to the ones of the acid-treated graphite intercalation compounds, but the intercalated ions and the expansion volume are different. The results show that the method is an innovation.

[1] J.E. Jones, M.C. Cheshire, D.J. Casadonte, C.C. Phife, Org. Lett. 6, 1915 (2004) http://dx.doi.org/10.1021/ol049663210.1021/ol0496632Search in Google Scholar

[2] J.H. Li, L.L. Feng, Z.X. Jia, Mater. Lett. 60, 746 (2006) http://dx.doi.org/10.1016/j.matlet.2005.10.00410.1016/j.matlet.2005.10.004Search in Google Scholar

[3] X.L. Chen, K.M. Song, J.H. Li, J.P. Liu, Carbon 34, 1599 (1996) http://dx.doi.org/10.1016/S0008-6223(97)88096-710.1016/S0008-6223(97)88096-7Search in Google Scholar

[4] F.Y. Kang, Y.P. Zheng, H.N. Wang, Y. Nishi, M. Inagaki, Carbon 40, 1575 (2002) http://dx.doi.org/10.1016/S0008-6223(02)00023-410.1016/S0008-6223(02)00023-4Search in Google Scholar

[5] J.H. Li, H.F. Da, Q. Liu, Mater. Lett. 60, 3927 (2006) http://dx.doi.org/10.1016/j.matlet.2006.06.06610.1016/j.matlet.2006.06.066Search in Google Scholar

[6] J.H. Li, Q. Liu, H.F. Da, Mater. Lett. 61, 1832 (2007) http://dx.doi.org/10.1016/j.matlet.2006.07.14210.1016/j.matlet.2006.07.142Search in Google Scholar

[7] J.H. Li, J. Li, M. Li, Mater. Lett. 61, 5070 (2007) http://dx.doi.org/10.1016/j.matlet.2007.04.01110.1016/j.matlet.2007.04.011Search in Google Scholar

[8] J. Li, J.H. Li, Mater. Lett. 62, 2047 (2008) http://dx.doi.org/10.1016/j.matlet.2007.11.01110.1016/j.matlet.2007.11.011Search in Google Scholar

[9] J.T. Li, M. Li, J.H. Li, H.W. Sun, Ultroson. Sonochem. 14, 62 (2007) http://dx.doi.org/10.1016/j.ultsonch.2006.01.00610.1016/j.ultsonch.2006.01.006Search in Google Scholar PubMed

[10] J.T. Li, M. Li, J.H. Li, H.W. Sun, Ultroson. Sonochem. 14, 241 (2007) http://dx.doi.org/10.1016/j.ultsonch.2006.04.00510.1016/j.ultsonch.2006.04.005Search in Google Scholar PubMed

[11] B. Debelak, K. Lafd, Carbon 45, 1727 (2007) http://dx.doi.org/10.1016/j.carbon.2007.05.01010.1016/j.carbon.2007.05.010Search in Google Scholar

[12] N.E. Sorokina, A.V. Redchitz, S.G. Ionov, V.V. Avdeev, J. Phys. Chem. Sol. 67, 1202 (2006) http://dx.doi.org/10.1016/j.jpcs.2006.01.04810.1016/j.jpcs.2006.01.048Search in Google Scholar

[13] Z.Y. Xu, Y.C. Su, Chin. J. Carbon Technol. 99, 1 (1999) Search in Google Scholar

Published Online: 2010-6-17
Published in Print: 2010-8-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow