Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 17, 2011

Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates

Lyudmila Kabaivanova, Georgi Chernev, Isabel Miranda Salvado and Maria Fernandes
From the journal Open Chemistry

Abstract

In this work the application of hybrid materials, containing TEOS as source of SiO2 and k-carrageenan in different percentage, synthesized by the sol-gel method at room temperature was studied. They were used as matrices for entrapment of whole Bacillus sp. UG-5B cells, producers of thermostable nitrilase. The effect of the surface area and size and quantity of pores in the synthesized materials on the enzyme activity was evaluated. The process of biodegradation of different concentrations of toxic, potentially carcinogenic and mutagenic substrates by the obtained biocatalysts was investigated. The enzyme reaction takes place by the nitrilase pathway, catalysing nitrile hydrolysis directly to the corresponding carboxylic acid, forming ammonia. At batch experiments the influence of the substrate concentration of different nitriles was tested and 20 mM concentration was found most suitable. A two-step biodegradation process in a laboratory-scale column bioreactor of o-, m- and p-tolunitrile as a mixture was followed. After operation of the system for nine hours for the mixture of substrates at a flow rate of 45 mL h−1 and at 60°C, the overall conversion realized was above 90%, showing a good efficiency of the investigated process.

[1] I. Gill, A. Ballesteros, TIBTECH 18, 282 (2000) 10.1016/S0167-7799(00)01457-8Search in Google Scholar

[2] I. Gill, A. Ballesteros, TIBTECH 18, 496 (2000) 10.3109/10242420009040118Search in Google Scholar

[3] G. Dervakos, C. Webb, Biotech. Adv. 9, 559 (1991) http://dx.doi.org/10.1016/0734-9750(91)90733-C10.1016/0734-9750(91)90733-CSearch in Google Scholar

[4] T. Ahuja, I. Mir, D. Kumar, Rajesh, Biomaterials 28, 791 (2007) http://dx.doi.org/10.1016/j.biomaterials.2006.09.04610.1016/j.biomaterials.2006.09.046Search in Google Scholar

[5] F. Teles, L. Fonseca, Materials Science and Engineering: C 28, 1530 (2008) 10.1016/j.msec.2008.04.010Search in Google Scholar

[6] C. Chen, C. Kao, S. Chen, Chemosphere 71, 133 (2008) http://dx.doi.org/10.1016/j.chemosphere.2007.10.05810.1016/j.chemosphere.2007.10.058Search in Google Scholar

[7] Ch. Rao, R. Prakasham, Ch. Lakshmi, A. Rao, Current Trends in Biotechnology and Pharmacy 3, 311 (2009) Search in Google Scholar

[8] J. Nigam, J. Bacteriol. 8, 189 (2000) 10.1016/S0168-1656(00)00246-7Search in Google Scholar

[9] U. Beshay, D. Abd-El-Haleem, H. Moawad, S. Naki, Biotech. Letters 24/15, 1295 (2002) http://dx.doi.org/10.1023/A:101622232813810.1023/A:1016222328138Search in Google Scholar

[10] A. Viggiani, G. Olivieri, L. Siani, A. Di Donato, J. Biotechnol. 17 (2006) Search in Google Scholar

[11] A. Soares, M. Murto, B. Guieysse, B. Mattiasson, Appl. Microbiol. Biotechnol. 69, 597 (2006) http://dx.doi.org/10.1007/s00253-005-0067-x10.1007/s00253-005-0067-xSearch in Google Scholar PubMed

[12] M. Cantarella, L. Cantarella, A. Callifuoko, J. Ind. Microbiol. Biotechnol. 33, 208 (2006) http://dx.doi.org/10.1007/s10295-004-0200-310.1007/s10295-004-0200-3Search in Google Scholar PubMed

[13] L. Martínková, V. Vejvoda, O. Kaplan, D. Kubáč, A. Malandra, M. Cantarella, K. Bezouška, V. Křen, Biotech. Adv. 27, 661 (2009) http://dx.doi.org/10.1016/j.biotechadv.2009.04.02710.1016/j.biotechadv.2009.04.027Search in Google Scholar PubMed

[14] D. Di Gioia, L. Bertin, G. Zanaroli, L. Marchetti, F. Fava, Process Biochemistry 41, 935 (2006) http://dx.doi.org/10.1016/j.procbio.2005.10.01610.1016/j.procbio.2005.10.016Search in Google Scholar

[15] I. Nam, Y. Kim, K. Murugesan, J. Jeon, Y. Chang, Y. Chang, J. Hazard. Mat. 157, 114 (2008) http://dx.doi.org/10.1016/j.jhazmat.2007.12.08610.1016/j.jhazmat.2007.12.086Search in Google Scholar PubMed

[16] K. Chapatwala, G. Babu, E. Armstead, J. Wolfram, Appl. Biochem. Biotechnol. 51, 717 (1995) http://dx.doi.org/10.1007/BF0293347210.1007/BF02933472Search in Google Scholar

[17] R. Bauer, N. Layh, C. Syldatk, A. Willets, Biotech. Letters 18/3, 343 (1996) 10.1007/BF00142956Search in Google Scholar

[18] Y. Shchipunov, T. Karpenko, A. Krekoten, Composite Interfaces 11/8, 587 (2005) http://dx.doi.org/10.1163/156855405314881610.1163/1568554053148816Search in Google Scholar

[19] A. Rekuć, J. Bryjak, K. Szymańska, A. Jarzębski, Bioresource Technology 101, 2076 (2010) http://dx.doi.org/10.1016/j.biortech.2009.11.07710.1016/j.biortech.2009.11.077Search in Google Scholar PubMed

[20] D. Avnir, T. Coradin, O. Lev, J. Livage, J. Mater. Chem. 16 1013 (2006) http://dx.doi.org/10.1039/b512706h10.1039/B512706HSearch in Google Scholar

[21] A. Pannier, C. Oehm, A. Fischer, P. Werner, U. Soltmann, H. Böttcher, Enzyme and Microbial. Tech. 47, 291 (2010) http://dx.doi.org/10.1016/j.enzmictec.2010.07.01410.1016/j.enzmictec.2010.07.014Search in Google Scholar

[22] V. Castelvetro, C. Vita, Adv. Coll. Interface Sci. 108–109, 167 (2004) http://dx.doi.org/10.1016/j.cis.2003.10.01710.1016/j.cis.2003.10.017Search in Google Scholar PubMed

[23] D. Graham, R. Pereira, D. Barfield, D. Cowan, Enzyme and Microbial Technology 26, 368 (2000) http://dx.doi.org/10.1016/S0141-0229(99)00169-610.1016/S0141-0229(99)00169-6Search in Google Scholar

[24] N. Nassif, O. Bouvet, M. Rager, C. Roux, T. Coradin, J. Livage, Nat. Matters 1, 42 (2002) http://dx.doi.org/10.1038/nmat70910.1038/nmat709Search in Google Scholar

[25] Y. Namano, S. Sunger, Process Biochemistry 39, 705 (2004) http://dx.doi.org/10.1016/S0032-9592(03)00183-310.1016/S0032-9592(03)00183-3Search in Google Scholar

[26] U. Schubert, J. Sol-Gel Sci. Tech. 26, 47 (2003) http://dx.doi.org/10.1023/A:102072910014810.1023/A:1020729100148Search in Google Scholar

[27] J. Fawcett, J. Scott, J. Clin. Path. 13, 156 (1960) http://dx.doi.org/10.1136/jcp.13.2.15610.1136/jcp.13.2.156Search in Google Scholar PubMed PubMed Central

[28] M. Desimone, J. Degrossi, M. D’Aquino, L. Diaz, Biotechnology Letters 24, 1557 (2002) http://dx.doi.org/10.1023/A:102037532100910.1023/A:1020375321009Search in Google Scholar

[29] N. Nassif, C. Roux, T. Coradin, M. Rager, O. Bouvet, J. Livage, J. Mater. Chem. 13, 203 (2003) http://dx.doi.org/10.1039/b210167j10.1039/b210167jSearch in Google Scholar

[30] B. Samuneva, P. Djambaski, E. Kashchieva, G. Chernev, L. Kabaivanova, E. Emanuilova, I.M.M. Salvado, M.H.V. Fernandes, A. Wu, Journal of Non-Crystalline Solids 354, 733 (2008) http://dx.doi.org/10.1016/j.jnoncrysol.2007.07.09410.1016/j.jnoncrysol.2007.07.094Search in Google Scholar

[31] L. Kabaivanova, E. Dobreva, E. Emanuilova, G. Chernev, B. Samuneva, I.M.M. Salvado, Minerva Biotechnologica 18, 23 (2006) Search in Google Scholar

[32] L. Kabaivanova, E. Emanuilova, G. Chernev, B. Samuneva, P. Djambaski, I.M.M. Salvado, Minerva Biotechnologica 19, 57 (2007) Search in Google Scholar

[33] G. Chernev, B. Borisova, L. Kabaivanova, I.I. Salvado, Cent. Eur. J. Chem. 8, 870 (2010) http://dx.doi.org/10.2478/s11532-010-0065-410.2478/s11532-010-0065-4Search in Google Scholar

[34] M. Wang, Top. Catal. 35, 117–130 (2005) http://dx.doi.org/10.1007/s11244-005-3817-110.1007/s11244-005-3817-1Search in Google Scholar

[35] H. Velankar, K. Clarke, R. Preez, D. Cowan, S. Burton, Trends in Biotechnology 28, 561 (2010) http://dx.doi.org/10.1016/j.tibtech.2010.08.00410.1016/j.tibtech.2010.08.004Search in Google Scholar

[36] S. Pasunooti, W. Surya, S. Tan, Z. Liang, J. Mol. Cat. B: Enzymatic 67, 98 (2010) http://dx.doi.org/10.1016/j.molcatb.2010.07.01210.1016/j.molcatb.2010.07.012Search in Google Scholar

[37] L. Martinkova, V. Kren, Biocatal. Biotransform. 2, 73 (2002) http://dx.doi.org/10.1080/1024242029001806910.1080/10242420290018069Search in Google Scholar

[38] L. Zheng, K. Flora, D. Brennan, Chem. Mater. 10, 3974 (1998). http://dx.doi.org/10.1021/cm980422w10.1021/cm980422wSearch in Google Scholar

[39] M. Garcia, M. Pena, Bioresour. Technol. 80, 137 (2001) http://dx.doi.org/10.1016/S0960-8524(01)00076-110.1016/S0960-8524(01)00076-1Search in Google Scholar

[40] C. Miyake-Nakayama, H. Ikatsu, M. Kashihara, M Tanaka, Appl. Microbiol. Biotechnol. 70/5, 625 (2006) http://dx.doi.org/10.1007/s00253-005-0194-410.1007/s00253-005-0194-4Search in Google Scholar PubMed

[41] G. Alvares, M. Desimone, L. Diaz, Appl. Microbiol. Biotechnol. 73/5, 1059 (2007) 10.1007/s00253-006-0580-6Search in Google Scholar PubMed

[42] H. Harms, M. Wells, J. Roelof, J. Vander Meer, Appl. Microbiol. Biotechnol. 70, 273 (2006) http://dx.doi.org/10.1007/s00253-006-0319-410.1007/s00253-006-0319-4Search in Google Scholar PubMed

Published Online: 2011-2-17
Published in Print: 2011-4-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow