Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 17, 2011

Evidence of changes in hydrophilic/hydrophobic balance and in chemical activity of HSA induced by thermal treatments

Victor Sahini and Gabriela Ionita
From the journal Open Chemistry


Samples of human serum albumin (HSA) obtained as a result of heat denaturation followed by refolding controlled by a cooling of the protein solution were studied by several methods: chromatographic measurements, kinetic of the reaction with a water soluble free radical and by electron paramagnetic resonance (EPR) spectroscopy. In this context the interaction of this protein with β-cyclodextrin (β-CD) and sodium dodecyl sulfate (SDS) was also investigated. Reversed phase thin layer chromatography (RP-TLC) showed changes in lipophylicity of HSA, which are related with the existence of different ensembles of conformers. The UV-Vis absorption spectra had shown the broadening of absorption band of the protein and a hyperchrom effect in the presence of SDS; β-CD reduces the effect of SDS on protein UV-Vis spectra.

Kinetic measurements related to the reaction of HSA with a water soluble DPPH type free radical provided evidence that reactivity of the HSA denaturated conformers is higher compared with the natural conformer. The affinity of SDS to the albumins surface and the effect of β-CD on the SDS/protein aggregates were also evident by changes in the EPR spectra of the spin probe CAT16.

[1] A. Fersht, Structure and mechanism in protein science, 4th edition (MW. H. Freeman and Comp., New York, 2002) Search in Google Scholar

[2] S.L. Wang, S.Y. Lin, M. J. Li, Y. S. Wei, T.F. Hsieh, Biophys. Chem. 114, 205 (2005) in Google Scholar

[3] N.C. Price, E. Stevens, Biochem. J. 201, 171 (1982) 10.1042/bj2010171Search in Google Scholar

[4] H-M. Zhou, C-L. Tsou, Biochim. Biophys. Acta 869, 69 (1986) in Google Scholar

[5] F. Couthon, E. Clottes, C. Vial, Biochem. Biophys. Res. Comm. 227, 854 (1996) in Google Scholar

[6] A.D. Robertson, K.P. Murphy, Chem. Rev. 97. 1251 (1997) in Google Scholar

[7] T. Petters, All About Albumin: Biochemistry, Genetics and Medical Applications (Academic Press, San Diego, 1997) Search in Google Scholar

[8] T. Peters Jr., Adv. Protein Chem. 161 (1985) 10.1016/S0065-3233(08)60065-0Search in Google Scholar

[9] W.E. Stites, Chem. Rev. 97, 1233 (1997) in Google Scholar

[10] A.S. Cohen, Curr. Opin. Rheumatol. 6, 68 (1994) in Google Scholar

[11] F.L. Aachmann, D.E. Oetzen, K.L. Larsen, R. Wimmer, Protein Eng. 16, 905 (2003) in Google Scholar

[12] M. Moriyama, Y. Kawasaka, K. Takeda, J. Coll. Interface Scie. 257, 41 (2003) in Google Scholar

[13] R.M. Garavito, S. Fersuson-Miller, J. Biol. Chem. 276, 32403 (2001) in Google Scholar

[14] J. Szejtli, Chem. Rev. 98, 1743 (1998) in Google Scholar

[15] K.A. Connors, Chem. Rev. 97, 1325 (1997) in Google Scholar

[16] A. Harada, Acc. Chem. Res. 34, 456 (2001) in Google Scholar

[17] K. Uekama, F. Hirayama, T. Irie, Chem. Rev. 98, 2045 (1998) in Google Scholar

[18] G. Ionita, P. Ionita, V.E. Sahini, C. Luca, J. Inclusion Phenom. Macrocyclic Chem. 39, 269 (2001) in Google Scholar

[19] J.F. Sigurjonsdottir, T. Loftsson, M. Masson, Int. J. Pharm. 186, 205 (1999) in Google Scholar

[20] K.N. Koushik, N. Bandi, U.B. Kompella, Pharm. Dev. Technol. 6, 595 (2001) in Google Scholar PubMed

[21] N. Karuppiah, A. Sharma, Biochem. Biophys. Res. Commun. 211, 60 (1995) in Google Scholar PubMed

[22] K. Akiyoshi, B. Mikami, J. Sunamoto, Bioconjug. Chem. 10, 321 (1999) in Google Scholar PubMed

[23] J. Bar, R. Golbik, G. Hubner, G. Kopperschlager, Biochemistry 39, 6960 (2000) in Google Scholar

[24] L. Sharma, A. Sharma, Eur. J. Biochem. 268, 2456 (2001) in Google Scholar

[25] X.Y. Dong, J.H. Shi, Y. Sun, Biotechnol. Prog. 18, 663 (2002) in Google Scholar

[26] G.V. Putirskaja, T. Siladi, Acta Chim. Hung. 72, 134 (1972) Search in Google Scholar

[27] P. Ionita, M.T. Caproiu, A.T. Balaban, Rev. Roum. Chim. 45, 935 (2000) Search in Google Scholar

[28] F. Tani, N. Shirai, T. Onishi, F. Venelle, K. Yasumoto, E. Doi, Protein Sci. 6, 1491 (1997) in Google Scholar

[29] R. Kaliszan, Quantitative Structure — Chromatographic Retention Relationships (Wiley, New York, 1987) Search in Google Scholar

[30] T. Cserhati, K. Valko, Chromatographic Determination of Molecular Interactions, Application in Biochemistry, Chemistry and Biophysics (CRC Press, Boca Raton, 1992) Search in Google Scholar

[31] G. Ionita, V.E. Sahini, G. Semenescu, P. Ionita, Acta Chimica Slovenica 47, 111 (2000) Search in Google Scholar

[32] C. Pantazica, G. Ionita, V.E. Sahini, Rev. Roum. Chem. 49, 1001 (2004) Search in Google Scholar

[33] G. Ionita, V.E. Sahini, J. Inclusion Phenom. Macrocyclic Chem. 50, 183 ( 2004) in Google Scholar

[34] L. Garcia-Rio, J.R. Leis, J.C. Mejuto, A. Navarro-Vazquez, J. Perez-Juste, P. Rodriguez-Dafonte, Langmuir 20, 606 (2004) in Google Scholar

[35] A. Caragheorgheopol, H. Caldararu, Specialist Periodical reports — Electron Paramagnetic Resonance (Royal Society of Chemistry, 2000) Search in Google Scholar

[36] N.J. Turro, X-G. Lei, K.P. Ananthapadmanabhan, M. Aronson, Langmuir, 11, 2525 (1995) in Google Scholar

[37] V.A. Livshits, D. Marsh, Biochem. Biophys. Acta 1466, 350 (2000) in Google Scholar

[38] M. Pantusa, L. Sportelli, R. Bartucci, Biophys. Chem. 114, 121 (2005) in Google Scholar PubMed

[39] V. Muravsky, T. Gurachevskaya, S. Berezenko, K. Schnurr, A. Gurachevsky, Spectrochim. Acta A 74, 42 (2009) in Google Scholar PubMed

[40] C. Ramachandran, R.A. Pyter, P. Mukerjee, J. Phys. Chem 86, 3198 (1982) in Google Scholar

[41] G. Ionita, A. Caragheorgheopol, H. Caldararu, L. Jones, V. Chechik, Org. Biomol. Chem. 7, 598 (2009) in Google Scholar

Published Online: 2011-2-17
Published in Print: 2011-4-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow