Abstract
Nax−yHyTi2−xFexO4·nH2O nanosheets with lepidocrocite-like layered structure were produced through alkaline hydrothermal treatment at very low temperatures (130°C) from ilmenite sand. The crystal structure, morphology and optical properties were investigated by X-Ray diffraction, transmission electron microscopy, selected area electron diffraction, energy dispersive spectroscopy and UV-Vis spectroscopy. The product shows leaf-like nanosheet morphology with thickness <30 nm and lengths <1 µm. Three lepidocrocite-like titanates (Imm2 space group) with similar a and c lattice parameters but different interlayer distances (b/2) were identified. This appears to be the first preparation of lepidocrocite-like layered nanosheets by a simple, energy efficient (low temperature) and low cost (starting from mineral sand) procedure.
[1] T. Sasaki, M. Watanabe, Y. Michiue, Y. Komatsu, F. Izumi, S. Takanouchi, Chem. Mater. 7, 1001 (1995) http://dx.doi.org/10.1021/cm00053a02910.1021/cm00053a029Search in Google Scholar
[2] T. Sasaki, F. Kooli, M. Iida, Y. Machiue, Chem. Mater. 10, 4123 (1998) http://dx.doi.org/10.1021/cm980535f10.1021/cm980535fSearch in Google Scholar
[3] M. Hanada, T. Sasaki, Y. Ebina, M. Watanabe, Journal of Photochemistry and Photobiology A: Chemistry 148, 273 (2002) http://dx.doi.org/10.1016/S1010-6030(02)00053-910.1016/S1010-6030(02)00053-9Search in Google Scholar
[4] A.F. Reid, W.G. Mumme, A.D. Wadsley, Acta Cryst. B24, 1228 (1968) Search in Google Scholar
[5] T. Gao, H. Fjellvag, P. Norby, Chem. Mater. 21, 3503 (2009) http://dx.doi.org/10.1021/cm901329g10.1021/cm901329gSearch in Google Scholar
[6] T. Gao, H. Fjellvag, P. Norby, J. Mater. Chem. 19, 787 (2009) 10.1039/B813147CSearch in Google Scholar
[7] T. Gao, P. Norby, H. Okamoto, H. Fjellvag, Inorg. Chem. 48, 9409 (2009) http://dx.doi.org/10.1021/ic901251w10.1021/ic901251wSearch in Google Scholar PubMed
[8] T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, Nakazawa, J. Am. Chem. Soc. 118, 8329 (1996) http://dx.doi.org/10.1021/ja960073b10.1021/ja960073bSearch in Google Scholar
[9] M. Osada, T. Sasaki, J. Mater. Chem. 19, 2503 (2009) http://dx.doi.org/10.1039/b820160a10.1039/b820160aSearch in Google Scholar
[10] N. Sakai, K. Fukuda, T. Shibata, Y. Ebina, K. Takada, T. Sasaki, J. Phys. Chem. B 110, 6198 (2006) http://dx.doi.org/10.1021/jp055691610.1021/jp0556916Search in Google Scholar PubMed
[11] T. Shibata, N. Sakai, K. Fukuda, Y. Ebina, K. Takada, T. Sasaki, Phys. Chem. Chem. Phys. 9, 2413 (2007) http://dx.doi.org/10.1039/b618448k10.1039/b618448kSearch in Google Scholar PubMed
[12] N. Sakai, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 126, 5851 (2004) http://dx.doi.org/10.1021/ja039458210.1021/ja0394582Search in Google Scholar PubMed
[13] T.C. Ozawa, K. Fukuda, K. Akatsuka, Y. Ebina, T. Sasaki, Chem. Mater. 19, 6575 (2007) http://dx.doi.org/10.1021/cm702552p10.1021/cm702552pSearch in Google Scholar
[14] T.C. Ozawa, K. Fukuda, K. Akatsuka, Y. Ebina, T. Sasaki, K. Kurashima, K. Kosuda, J. Phys. Chem. C 112, 1312 (2008) http://dx.doi.org/10.1021/jp711699c10.1021/jp711699cSearch in Google Scholar
[15] S. Ida, C. Ogata, U. Unal, K. Izawa, T. Inoue, O. Altuntasoglu, Y. Matsumoto, J. Am. Chem. Soc. 42, 4092 (2003) Search in Google Scholar
[16] M. Osada, Y. Ebina, K. Takada, T. Sasaki, Adv. Mater. 18, 295 (2006) http://dx.doi.org/10.1002/adma.20050181010.1002/adma.200501810Search in Google Scholar
[17] M. Osada, Y. Ebina, K. Fukuda, K. Ono, K. Takada, K. Yamaura, E. Takayama-Muromachi, T. Sasaki, Phys. Rev. B 73, 153301 (2006) http://dx.doi.org/10.1103/PhysRevB.73.15330110.1103/PhysRevB.73.153301Search in Google Scholar
[18] M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, T. Sasaki, Appl. Phys. Lett. 92, 253110 (2008) http://dx.doi.org/10.1063/1.293709410.1063/1.2937094Search in Google Scholar
[19] Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 128, 4872 (2006) http://dx.doi.org/10.1021/ja058447110.1021/ja0584471Search in Google Scholar PubMed
[20] T. Sasaki, Y. Ebina, Y. Kitami, M. Watanabe, J. Phys. Chem. B 105, 6116 (2001) http://dx.doi.org/10.1021/jp010421i10.1021/jp010421iSearch in Google Scholar
[21] D.V. Bavykin, V.N. Parmon, A.A. Lapkina, F.C. Walshc, J. Mater. Chem. 14, 3370 (2004) http://dx.doi.org/10.1039/b406378c10.1039/b406378cSearch in Google Scholar
[22] X. Wu, G. Steinle-Neumann, O. Narygina, I. Kantor, C. McCammon, S. Pascarelli, G. Aquilanti, V. Prakapenka, L. Dubrovinsky, Phys. Rev. B 79, 094106 (2009) http://dx.doi.org/10.1103/PhysRevB.79.09410610.1103/PhysRevB.79.094106Search in Google Scholar
[23] E. Morgado Jr., M.A.S. de Abreu, O.R.C. Pravia, B.A. Marinkovic, P.M. Jardim, F.C. Rizzo, A.S. Araújo, Solid State Sciences 8, 888 (2006) http://dx.doi.org/10.1016/j.solidstatesciences.2006.02.03910.1016/j.solidstatesciences.2006.02.039Search in Google Scholar
[24] E. Morgado, Jr., M.A.S. de Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim, A.S. Araujo, Chem. Mater. 19, 665 (2007) http://dx.doi.org/10.1021/cm061294b10.1021/cm061294bSearch in Google Scholar
[25] B.A. Marinkovic, L. Mancic, P.M. Jardim, O. Milosevic, F. Rizzo, Solid State Commun. 145, 346 (2008) http://dx.doi.org/10.1016/j.ssc.2007.12.00610.1016/j.ssc.2007.12.006Search in Google Scholar
[26] T. Sasaki, M. Waranabe, J. Phys. Chem. B, 101, 10159 (1997) http://dx.doi.org/10.1021/jp972765810.1021/jp9727658Search in Google Scholar
[27] B. Gilbert, C. Frandsen, E.R. Maxey, D.M. Sherman, Phys. Rev. 79, 035108 (2009) http://dx.doi.org/10.1103/PhysRevB.79.03510810.1103/PhysRevB.79.035108Search in Google Scholar
© 2011 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.