Abstract
This report investigated nonlinear spatiotemporal behavior in the ferroin-bromate-pyrocatechol reaction, in which two stages of wave formation, separated by several hours of quiescent period, were observed. In addition to its great photosensitivity, the second stage wave activity could undergo spontaneous breakups at broad reaction conditions. Analysis based on one-dimensional space-time plot suggests that the breakup was caused by propagation slowdown of the leading wave. Due to the presence of coupled autocatalytic reactions, the propagation of the initial and the second stage waves exhibited different and subtle responses to the variation of the concentration of each reagent.
[1] R.J. Field, M. Burger (Eds.), Oscillations and Traveling Waves in Chemical Systems (Wiley-Interscience, New York, 1985) Search in Google Scholar
[2] A.T. Winfree, The Geometry of Biological Time (Springer, Heidelberg, 2000) 10.1007/978-1-4757-3484-3Search in Google Scholar
[3] S.K. Scott, Chemical Chaos (Oxford University Press, New York, 1994) Search in Google Scholar
[4] B.R. Johnson, S.K. Scott, A.F. Taylor, J. Chem. Soc. Faraday Trans. 93, 3733 (1997). http://dx.doi.org/10.1039/a704616b10.1039/a704616bSearch in Google Scholar
[5] C. Luengviriya, U. Storb, G. Lindner, S.C. Müller, M. Bar, M.J.B. Hauser, Phys. Rev. Lett. 100, 148302 (2008) http://dx.doi.org/10.1103/PhysRevLett.100.14830210.1103/PhysRevLett.100.148302Search in Google Scholar PubMed
[6] V.K. Vanag, I. Hanazaki, J. Phys. Chem. A 101, 2147 (1997) http://dx.doi.org/10.1021/jp963718310.1021/jp9637183Search in Google Scholar
[7] T.R. Chigwada, P. Parmananda, K. Showalter, Phys. Rev. Lett. 96, 244101 (2006) http://dx.doi.org/10.1103/PhysRevLett.96.24410110.1103/PhysRevLett.96.244101Search in Google Scholar PubMed
[8] C. Luengviriya, U. Storb, M.J.B. Hauser, S.C. Müller, Phys. Chem. Chem. Phys. 8, 1425 (2006) http://dx.doi.org/10.1039/b517918a10.1039/b517918aSearch in Google Scholar PubMed
[9] A.L. Kawczynski, J. Non-Equilib. Thermodyn. 3, 29 (1978) http://dx.doi.org/10.1515/jnet.1978.3.1.2910.1515/jnet.1978.3.1.29Search in Google Scholar
[10] L. Adamčíková, Z. Farbulová, P. Ševčík, New J. Chem. 25, 487 (2001) http://dx.doi.org/10.1039/b008467k10.1039/b008467kSearch in Google Scholar
[11] I. Szalai, K. Kurin-Csörgei, M. Orbán, Phys. Chem. Chem. Phys. 4, 1271 (2002) http://dx.doi.org/10.1039/b109388f10.1039/b109388fSearch in Google Scholar
[12] O. Steinbock, S.C. Müller, Phys. Rev. E 47, 1506 (1993) http://dx.doi.org/10.1103/PhysRevE.47.150610.1103/PhysRevE.47.1506Search in Google Scholar PubMed
[13] E. Fung, W.W. Wong, J.K. Suen, T. Bulter, S. Lee, J.C. Liao, Nature 435, 118 (2005) http://dx.doi.org/10.1038/nature0350810.1038/nature03508Search in Google Scholar PubMed
[14] K. Horikawa, K. Ishimatsu, E. Yoshimoto, S. Kondo, H. Takeda, Nature 441, 719 (2006) http://dx.doi.org/10.1038/nature0486110.1038/nature04861Search in Google Scholar PubMed
[15] W.W. Wong, T.Y. Tsai, J.C. Liao, Mol. Syst. Biol. 3, 1 (2007) http://dx.doi.org/10.1038/msb410017210.1038/msb4100172Search in Google Scholar PubMed PubMed Central
[16] B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999) http://dx.doi.org/10.1038/2067610.1038/20676Search in Google Scholar PubMed
[17] S. Danø, P. Sørensen, F. Hynne, Nature 402, 320 (1999) http://dx.doi.org/10.1038/4632910.1038/46329Search in Google Scholar PubMed
[18] T. Hideshima, Y. Kato, Biophys. Chem. 124, 100 (2006) http://dx.doi.org/10.1016/j.bpc.2006.04.01710.1016/j.bpc.2006.04.017Search in Google Scholar PubMed
[19] P. Mohanty, Nature 437, 325 (2005) http://dx.doi.org/10.1038/437325a10.1038/437325aSearch in Google Scholar PubMed
[20] N.J. Abram, M.K. Gagan, Z. Liu, W.S. Hantoro, M.T. McCulloch, B.W. Suwargadi, Nature 445, 299 (2007) http://dx.doi.org/10.1038/nature0547710.1038/nature05477Search in Google Scholar PubMed
[21] K. Showalter, R. Kapral (Eds), Chemical Wave and Pattern Formation (Kluwer Academic Publishers, Dordrecht, 1995) Search in Google Scholar
[22] O. Steinbock, V. Zykov, S.C. Müller, Nature 366, 322 (1993) http://dx.doi.org/10.1038/366322a010.1038/366322a0Search in Google Scholar
[23] V. Petroy, Q. Ouyang, H. Swinney, Nature 388, 655 (1997) http://dx.doi.org/10.1038/4173210.1038/41732Search in Google Scholar
[24] S. Kádár, J. Wang, K. Showalter, Nature 391, 770 (1998) http://dx.doi.org/10.1038/3581410.1038/35814Search in Google Scholar
[25] L. Kuhnert, K.I. Agladze, V.I. Krinsky, Nature 337, 244 (1989) http://dx.doi.org/10.1038/337244a010.1038/337244a0Search in Google Scholar
[26] J. Wang, S. Kádár, P. Jung, K. Showalter, Phys. Rev. Lett. 82, 855 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.85510.1103/PhysRevLett.82.855Search in Google Scholar
[27] L. Yang, I.R. Epstein, J. Phys. Chem. A 106, 11676 (2002) http://dx.doi.org/10.1021/jp026090710.1021/jp0260907Search in Google Scholar
[28] J.S. Park, S.J. Woo, K.J. Lee, Phys. Rev. Lett. 93, 098302 (2004) http://dx.doi.org/10.1103/PhysRevLett.93.09830210.1103/PhysRevLett.93.098302Search in Google Scholar PubMed
[29] A. Goryachev, H. Chate, R. Kapral, Phys. Rev. Lett. 80, 873 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.87310.1103/PhysRevLett.80.873Search in Google Scholar
[30] Q. Ouyang, J. M. Flesselles, Nature 379, 143 (1996) http://dx.doi.org/10.1038/379143a010.1038/379143a0Search in Google Scholar
[31] J. Zhao, Y. Chen, J. Wang, J. Chem. Phys. 122, 114514 (2005) http://dx.doi.org/10.1063/1.187711210.1063/1.1877112Search in Google Scholar PubMed
[32] Y. Chen, J. Wang, J. Phys. Chem. A 109, 3950 (2005) http://dx.doi.org/10.1021/jp050756q10.1021/jp050756qSearch in Google Scholar PubMed
[33] N. Li, J. Zhao, J. Wang, J. Chem. Phys. 128, 244509 (2008) http://dx.doi.org/10.1063/1.294314110.1063/1.2943141Search in Google Scholar PubMed
[34] S. Shah, J. Wang, J. Phys. Chem. C 111, 10639 (2007) http://dx.doi.org/10.1021/jp073071u10.1021/jp073071uSearch in Google Scholar
[35] V. Ruisi, J. Wang, Phys. Rev. E 78, 016102 (2009) http://dx.doi.org/10.1103/PhysRevE.78.01610210.1103/PhysRevE.78.016102Search in Google Scholar PubMed
[36] M. Harati, J. Wang, Z. Phys. Chem. 222, 997 (2008) 10.1524/zpch.2008.5251Search in Google Scholar
[37] M. Harati, J. Wang, J. Phys. Chem. A 112, 4241 (2008) http://dx.doi.org/10.1021/jp710200y10.1021/jp710200ySearch in Google Scholar PubMed
[38] P. Herbine, R. J. Field, J. Phys. Chem. 84, 1330 (1980) http://dx.doi.org/10.1021/j100448a00810.1021/j100448a008Search in Google Scholar
[39] N. Manz, S.C. Müller, O. Steinbock, J. Phys. Chem. A 104, 5896 (2000) http://dx.doi.org/10.1021/jp001055q10.1021/jp001055qSearch in Google Scholar
[40] C.T. Hamik, N. Manz, O. Steinbock, J. Phys. Chem. A 105, 6144 (2001) http://dx.doi.org/10.1021/jp010270j10.1021/jp010270jSearch in Google Scholar
[41] L. Kuhnert, H.J. Krug, J. Phys. Chem. 91, 730 (1987) http://dx.doi.org/10.1021/j100287a04710.1021/j100287a047Search in Google Scholar
[42] R.J. Field, R.M. Noyes, J. Am. Chem. Soc. 96, 2001 (1974) http://dx.doi.org/10.1021/ja00814a00310.1021/ja00814a003Search in Google Scholar
[43] Z. Nagy-Ungvarai, J.J. Tyson, B. Hess, J. Phys. Chem. 93, 707 (1989) http://dx.doi.org/10.1021/j100339a04010.1021/j100339a040Search in Google Scholar
[44] P.M. Wood, J. Ross, J. Chem. Phys. 82, 1924 (1985) http://dx.doi.org/10.1063/1.44837610.1063/1.448376Search in Google Scholar
[45] K. Showalter, J. Phys. Chem. 85, 440 (1981) http://dx.doi.org/10.1021/j150604a02410.1021/j150604a024Search in Google Scholar
[46] M. Harati, J. Wang, Chaos 19, 023116 (2009) http://dx.doi.org/10.1063/1.313382310.1063/1.3133823Search in Google Scholar PubMed
© 2011 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.