Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 22, 2011

SERS approach for Zn(II) detection in contaminated soil

László Szabó, Loredana Leopold, Bogdan Cozar, Nicolae Leopold, Krisztian Herman and Vasile Chiş
From the journal Open Chemistry

Abstract

Soil contamination by metals is a common problem encountered in many industrialized countries. In this work we present a new approach for heavy metals detection by using surface-enhanced Raman scattering (SERS) spectroscopy. Zn(II) can be clearly determined by SERS in contaminated soil by using 4-(2-pyridylazo) resorcinol (PAR) as chelating molecule for the metal ion. The SERS spectra of PAR, of its metal chelates and of the soil extract-PAR mixture were recorded using a hydroxylamine reduced silver colloid. An excellent match of the PAR-contaminated soil extracts SERS spectrum to the Zn(PAR)2 SERS spectrum can be observed, demonstrating the presence of Zn(II) in the soil probes. Density functional theory (DFT) based calculations were also performed for a reliable assignment of SERS spectra.

[1] A.A. Ensafi, M. Fouladgar, Sens. Actuators B 113 (2006) 88 http://dx.doi.org/10.1016/j.snb.2005.02.02710.1016/j.snb.2005.02.027Search in Google Scholar

[2] P.C.A. Jeronimo, A.N. Araujo, M. Conceicao, B.S.M. Montenegro, Sens. Actuators B 103 (2004) 169 http://dx.doi.org/10.1016/j.snb.2004.04.04910.1016/j.snb.2004.04.049Search in Google Scholar

[3] P.C.A. Jeronimo, A.N. Araujo, M.C.B.S.M. Montenegro, C. Pasquini, I.M. Raimundo Jr, Anal. Bioanal. Chem. 380 (2004) 108 http://dx.doi.org/10.1007/s00216-004-2718-710.1007/s00216-004-2718-7Search in Google Scholar PubMed

[4] J. Ghasemi, H. Peyman, M. Meloun, J. Chem. Eng. Data 52 (2007) 1171 http://dx.doi.org/10.1021/je060325g10.1021/je060325gSearch in Google Scholar

[5] G.C. Schatz, R.P. Van Duyne, In J.M. Chalmers, P.R. Griffiths (Eds.), Electromagnetic Mechanism of Surface-Enhanced Spectroscopy, Handbook of Vibrational Spectroscopy (Wiley, New York, 2002) 759–774 Search in Google Scholar

[6] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99 (1999) 2957 http://dx.doi.org/10.1021/cr980133r10.1021/cr980133rSearch in Google Scholar PubMed

[7] K. Kneipp, H. Kneipp, H.G. Bohr, Top. Appl. Phys. 103 (2006) 261 http://dx.doi.org/10.1007/3-540-33567-6_1310.1007/3-540-33567-6_13Search in Google Scholar

[8] N. Leopold, S. Cîntă Pînzaru, M. Baia, E. Antonescu, O. Cozar, W. Kiefer, J. Popp, Vib. Spectrosc. 39 (2005) 16 http://dx.doi.org/10.1016/j.vibspec.2005.02.01910.1016/j.vibspec.2005.02.019Search in Google Scholar

[9] L.G. Crane, D.X. Wang, L.M. Sears, B. Heyns, K. Carron, Anal. Chem. 67 (1995) 360 http://dx.doi.org/10.1021/ac00098a02110.1021/ac00098a021Search in Google Scholar

[10] K. Carron, K. Mullen, M. Lanouette, H. Angersbach, Appl. Spectrosc. 45 (1991) 420 http://dx.doi.org/10.1366/000370291433710010.1366/0003702914337100Search in Google Scholar

[11] N. Leopold, L. Szabó, A. Pîrnău, M. Aluaş, L.F. Leopold, V. Chiş, O. Cozar, J. Mol. Struct. 919 (2009) 94 http://dx.doi.org/10.1016/j.molstruc.2008.08.02210.1016/j.molstruc.2008.08.022Search in Google Scholar

[12] N. Leopold, B. Lendl, J. Phys. Chem. B 107 (2003) 5723 http://dx.doi.org/10.1021/jp027460u10.1021/jp027460uSearch in Google Scholar

[13] Gaussian 03, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian, Inc., Wallingford CT, 2004) Search in Google Scholar

[14] A.D. Becke, J. Chem. Phys. 98 (1993) 5648 http://dx.doi.org/10.1063/1.46491310.1063/1.464913Search in Google Scholar

[15] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785 http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Search in Google Scholar

[16] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502 http://dx.doi.org/10.1021/jp960976r10.1021/jp960976rSearch in Google Scholar

[17] C.F. Leypold, M. Reiher, G. Brehm, M.O. Schmitt, S. Schneider, P. Matousek, M. Towrie, Phys.Chem.Chem.Phys. 5 (2003) 114 http://dx.doi.org/10.1039/b210522e10.1039/b210522eSearch in Google Scholar

[18] V. Chiş, A. Pîrnău, M. Vasilescu, R.A. Varga, O. Oniga, J. Mol. Struct. (Theochem) 831 (2008) 63 10.1016/j.theochem.2007.10.041Search in Google Scholar

[19] V. Chiş, A. Pîrnău, T. Jurcă, M. Vasilescu, S. Simon, O. Cozar, L. David, Chem. Phys. 36 (2005) 153 Search in Google Scholar

[20] L. Szabó, V. Chiş, A. Pîrnău, N. Leopold, O. Cozar, Sz. Orosz, Vib. Spectrosc. 48 (2008) 297 http://dx.doi.org/10.1016/j.vibspec.2008.02.00210.1016/j.vibspec.2008.02.002Search in Google Scholar

[21] L. Szabó, V. Chiş, A. Pîrnău, N. Leopold, O. Cozar, Sz. Orosz, J. Mol. Struct. 924–926 (2009) 361 Search in Google Scholar

[22] Z.T. Jiang, J.C. Yu, H.Y. Liu, Anal. Sci. 21 (2005) 851 http://dx.doi.org/10.2116/analsci.21.85110.2116/analsci.21.851Search in Google Scholar PubMed

[23] F. Karipcin, E. Kabalcilar, Acta Chim. Slov. 54 (2007) 242 Search in Google Scholar

Published Online: 2011-3-22
Published in Print: 2011-6-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow