Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 22, 2011

Aqueous phenol and ethylene glycol solutions in electrohydrodynamic liquid bridging

Mathias Eisenhut, Xinghua Guo, Astrid Paulitsch-Fuchs and Elmar Fuchs
From the journal Open Chemistry

Abstract

The formation of aqueous bridges containing phenol and ethylene glycol as well as bisphenol-A, hydrochinone and p-cresol under the application of high voltage DC (“liquid bridges”) is reported. Detailed studies were made for phenol and glycol with concentrations from 0.005 to 0.531 mol L−1. Conductivity as well as substance and mass transfers through these aqueous bridges are discussed and compared with pure water bridges. Previously suggested bidirectional mass transport is confirmed for the substances tested. Anodic oxidation happens more efficiently when phenol or glycol are transported from the cathode to the anode since in this case the formation of a passivation layer or electrode poisoning are retarded by the electrohydrodynamic (EHD) flow. The conductivity in the cathode beaker decreases in all experiments due to electrophoretic transport of naturally dissolved carbonate and bicarbonate to the anode. The observed electrochemical behavior is shortly discussed and compared to known mechanisms.

[1] W.G. Armstrong, The Electrical Engineer 10, 154 (1893) Search in Google Scholar

[2] E.C. Fuchs, J. Woisetschläger, K. Gatterer, E. Maier, R. Pecnik, G. Holler, H. Eisenkölbl, J. Phys. D: Appl. Phys. 40, 6112 (2007) http://dx.doi.org/10.1088/0022-3727/40/19/05210.1088/0022-3727/40/19/052Search in Google Scholar

[3] E.C. Fuchs, K. Gatterer, G. Holler, J. Woisetschläger, J. Phys. D: Appl. Phys. 41, 185502 (2008) http://dx.doi.org/10.1088/0022-3727/41/18/18550210.1088/0022-3727/41/18/185502Search in Google Scholar

[4] E.C. Fuchs, B. Bitschnau, J. Woisetschläger, E. Maier, B. Beuneu, J. Teixeira, J. Phys. D: Appl. Phys. 42, 065502 (2009) http://dx.doi.org/10.1088/0022-3727/42/6/06550210.1088/0022-3727/42/6/065502Search in Google Scholar

[5] E.C. Fuchs, P. Baroni, B. Bitschnau, L. Noirez, J. Phys. D: Appl. Phys. 43, 105502 (2010) http://dx.doi.org/10.1088/0022-3727/43/10/10550210.1088/0022-3727/43/10/105502Search in Google Scholar

[6] J. Woisetschläger, K. Gatterer, E.C. Fuchs, Exp. Fluids 48, 121 (2010) http://dx.doi.org/10.1007/s00348-009-0718-210.1007/s00348-009-0718-2Search in Google Scholar

[7] H. Nishiumi, F. Honda, Res. Let. Phys. Chem. (2009) art. ID 371650 Search in Google Scholar

[8] M. Tello, R. Garcia, J.A. Martín-Gago, N.F. Martínez, M.S. Martín-González, L. Aballe, A. Baranov, L. Gegoratti, Advanced Materials 17, 1480 (2005) http://dx.doi.org/10.1002/adma.20040146610.1002/adma.200401466Search in Google Scholar

[9] T. Cramer, F. Zerbetto, R. Garcia, Langmuir 24, 6116 (2008) http://dx.doi.org/10.1021/la800220r10.1021/la800220rSearch in Google Scholar PubMed

[10] A. Widom, J. Swain, J. Silverberg, S. Sivasubramanian, Y.N. Srivastava, Phys. Rev. E 80, 016301 (2009) http://dx.doi.org/10.1103/PhysRevE.80.01630110.1103/PhysRevE.80.016301Search in Google Scholar PubMed

[11] A. Castellanos, Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No.380 (Springer, Wien, New York, 1998) ISBN 3-211-83137-1 Search in Google Scholar

[12] J. Mrázek, J. V. Burda, J. Chem. Phys. 125, 194518 (2006) http://dx.doi.org/10.1063/1.236338310.1063/1.2363383Search in Google Scholar PubMed

[13] W.L. Jorgensen, J. Tirado-Rives, PNAS Proc. Natl. Acad. Sci. 102, 6685 (2005) 10.1073/pnas.0408037102Search in Google Scholar PubMed PubMed Central

[14] E. Del Giudice, Journal of Physics: Conf. Ser. 67, 012006 (2006) http://dx.doi.org/10.1088/1742-6596/67/1/01200610.1088/1742-6596/67/1/012006Search in Google Scholar

[15] T. Head-Gordon, M.E. Johnson, PNAS Proc. Natl. Acad. Sci. 21, 7973 (2006) http://dx.doi.org/10.1073/pnas.051059310310.1073/pnas.0510593103Search in Google Scholar PubMed PubMed Central

[16] H.E. Stanley, S.V. Buldyrev, G. Franzese, N. Giovambattista, F.W. Starr, Phil. Trans. R. Soc. A 363, 509 (2005) http://dx.doi.org/10.1098/rsta.2004.150510.1098/rsta.2004.1505Search in Google Scholar PubMed

[17] C.A. Chatzidimitriou-Dreismann, T.A. Redah, R.M.F. Streffer, J. Mayers, Phys. Rev. Lett. 79, 2839 (1997) http://dx.doi.org/10.1103/PhysRevLett.79.283910.1103/PhysRevLett.79.2839Search in Google Scholar

[18] R. Arani, I. Bono, E. Del Giudice, G. Preparata, International Journal of Modern Physics B 9, 1813 (1995) http://dx.doi.org/10.1142/S021797929500074410.1142/S0217979295000744Search in Google Scholar

[19] E. Del Giudice, E.C. Fuchs, G. Vitiello, Water (Seattle) 2, 69 (2010) ISSN 2155-8434 Search in Google Scholar

[20] R.C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M.E. Fontanella, F. Saija, J. Phys. D: Appl. Phys. 43, 175405 (2010) http://dx.doi.org/10.1088/0022-3727/43/17/17540510.1088/0022-3727/43/17/175405Search in Google Scholar

[21] E.C. Fuchs, MDPI Water 2, 381 (2010) http://dx.doi.org/10.3390/w203038110.3390/w2030381Search in Google Scholar

[22] E.C. Fuchs, L.L.F. Agostinho, A. Wexler, R.M. Wagterveld, J. Tuinstra, J. Woisetschläger, J. Phys. D: Appl. Phys. 44 025501 (2011) http://dx.doi.org/10.1088/0022-3727/44/2/02550110.1088/0022-3727/44/2/025501Search in Google Scholar

[23] G.H. Pollack, Cells, gels and the engine of life (Ebener & Sons, Seattle WA, 2001) ISBN 0-9626895-2-1 Search in Google Scholar

[24] K. Ovchinnikova, G.H. Pollack, Langmuir 25(1), 542 (2009) http://dx.doi.org/10.1021/la802430k10.1021/la802430kSearch in Google Scholar PubMed PubMed Central

[25] H. R. Corti, Langmuir 25(11), 6587 (2009) http://dx.doi.org/10.1021/la900723t10.1021/la900723tSearch in Google Scholar PubMed

[26] K. Ovchinnikova, G.H. Pollack, Langmuir 25(18), 11202 (2009) http://dx.doi.org/10.1021/la901533c10.1021/la901533cSearch in Google Scholar

[27] H.R. Corti, Langmuir 25(18), 11203 (2009) http://dx.doi.org/10.1021/la902030p10.1021/la902030pSearch in Google Scholar

[28] E.C. Fuchs, L.L.F. Agostinho, M. Eisenhut, J. Woisetschläger, Proc. SPIE 7376, 73761E1 (2010) DOI:10.1117/12.868994 10.1117/12.868994Search in Google Scholar

[29] F. Saija, F. Aliotta, M.E. Fontanella, M. Pochylski, G. Salvato, C. Vasi, R.C. Ponterio, J. Chem. Phys. 133, 081104 (2010) http://dx.doi.org/10.1063/1.348369010.1063/1.3483690Search in Google Scholar

[30] A.G. Marin, D. Lohse, Phys. Fluids 22, 122104 (2010) http://dx.doi.org/10.1063/1.351846310.1063/1.3518463Search in Google Scholar

[31] A.A. Aerov, Why the Water Bridge does not collapse, arXiv:1012.1592v1 (2010) 10.1103/PhysRevE.84.036314Search in Google Scholar

[32] M. Gattrell, D.W. Kirk, J. Electrochem. Soc. 140(6), 1534 (1993) http://dx.doi.org/10.1149/1.222159810.1149/1.2221598Search in Google Scholar

[33] B. Fleszar, J. Ploszynska, Electrochimia Acta 30(1), 31 (1985) http://dx.doi.org/10.1016/0013-4686(85)80055-410.1016/0013-4686(85)80055-4Search in Google Scholar

[34] D. Fino, C. Carlesi Jara, G. Saracco, V. Specchia, P. Spinelli, J, Appl, Electrochem. 35, 405 (2005) http://dx.doi.org/10.1007/s10800-005-0799-410.1007/s10800-005-0799-4Search in Google Scholar

[35] Ch. Comminellis, C. Pulgrain, J. Appl. Electrochem. 21, 703 (1991) http://dx.doi.org/10.1007/BF0103404910.1007/BF01034049Search in Google Scholar

[36] S. Andreescu, D. Andreescu, O.A. Sadik, Electrochem. Comm. 5, 681 (2003) http://dx.doi.org/10.1016/S1388-2481(03)00166-810.1016/S1388-2481(03)00166-8Search in Google Scholar

[37] R.C. Kolle, D.C. Johnson, Anal. Chem, 51(6), 741 (1979) http://dx.doi.org/10.1021/ac50042a03710.1021/ac50042a037Search in Google Scholar

[38] R. Menini, Y.M. Henuset, J. Fournier, J. Appl. Electrochem. 35, 625 (2005) http://dx.doi.org/10.1007/s10800-005-2573-z10.1007/s10800-005-2573-zSearch in Google Scholar

[39] X.-Y. Li, Y.-H. Cui, Y.-J. Feng, Z.-M. Xie, J.-D. Gu, Water Res. 39, 1972 (2005) http://dx.doi.org/10.1016/j.watres.2005.02.02110.1016/j.watres.2005.02.021Search in Google Scholar

[40] P. Canizares, J.A. Domínguez, M.A. Rodrigo, J. Villaseñor, J. Rodríguez, Ind. Eng. Chem. Res. 38(10), 3779 (1999) http://dx.doi.org/10.1021/ie990157410.1021/ie9901574Search in Google Scholar

[41] R.B. de Lima, V. Paganin, T. Iwasita, W. Vielstich, Electrochimica Acta 49, 85 (2003) http://dx.doi.org/10.1016/j.electacta.2003.05.00410.1016/j.electacta.2003.05.004Search in Google Scholar

[42] K. Matsuoka, Electrochimica Acta 51, 1085 (2005) http://dx.doi.org/10.1016/j.electacta.2005.06.00210.1016/j.electacta.2005.06.002Search in Google Scholar

[43] A. Kelaidopoulou, E. Abelidou, A. Papoutsis, E.K. Polychroniadis, G. Kokkinidis, J. Appl. Electrochem. 28, 1101 (1998) http://dx.doi.org/10.1023/A:100348962399210.1023/A:1003489623992Search in Google Scholar

[44] P.A. Christensen, A. Hamnett, J. Electroanal. Chem. 260, 341 (1989) http://dx.doi.org/10.1016/0022-0728(89)87149-910.1016/0022-0728(89)87149-9Search in Google Scholar

[45] F. Hahn, B. Beden, F. Kadirgan, Electrochimica Acta. 23, 299 (1978) http://dx.doi.org/10.1016/0013-4686(78)80065-610.1016/0013-4686(78)80065-6Search in Google Scholar

[46] R. Parsons, T. VanderNoot, J. Electroanal. Chem. 257, 9 (1988) http://dx.doi.org/10.1016/0022-0728(88)87028-110.1016/0022-0728(88)87028-1Search in Google Scholar

[47] J. Kendall, J. Am. Chem. Soc. 38, 1480 (1916) http://dx.doi.org/10.1021/ja02265a00410.1021/ja02265a004Search in Google Scholar

Published Online: 2011-3-22
Published in Print: 2011-6-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow