Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 4, 2011

Assessment of different sorbents efficiency for solid phase extraction of aquatic humic acids

  • Carmen Roba EMAIL logo , Cristina Jimenez , Călin Baciu , Simion Beldean-Galea , Erika Levei and Emil Cordoš
From the journal Open Chemistry


In the present study, a simple procedure for the isolation by solid-phase extraction (SPE) and quantification by UV-Vis spectrometry (400 nm) of the humic acids (HAs) in the natural waters was developed. Seven different sorbents: Porapak P (polystyrene-divinylbenzene copolymer), Florisil (chemical composition: 84.0% SiO2, 15.5% MgO and 0.5% Na2SO4), Silica gel C18 (octadecyl silane), Strata X (surface modified polystyrene-divinylbenzene), Strata NH2 (silica-based trifunctional amino ligand), Strata SAX (silica-based trifunctional quaternary amine) and Strata C18-E (silica-based trifunctional C18 with hydrophobic end-capping of silanols) were tested. The HAs, adsorbed on SPE cartridges, were eluted using: NaOH (0.1 M), sodium dodecyl sulphate (SDS) (20 g L−1), and a 1:1 v/v mixture of SDS (20 g L−1) and NaOH (0.1 M). The extraction efficiency was evaluated by comparing the HAs recovery levels. The repeatability of results was estimated by the relative standard deviation (RSD). The data confirmed that Porapak P, Silica gel C18, Florisil, Strata NH2 and Strata X could be good alternatives for the traditional isolation of the aquatic HAs with XAD resin. The proposed method was applied for the determination of HAs in some waters sampled from the Western Romanian Plain. The content of HAs was correlated with the arsenic concentration and total organic carbon (TOC) level.

[1] E.M. Peña-Méndez, J. Havel, J. Patočka, J. Appl. Biomed. 3, 13 (2005) 10.32725/jab.2005.002Search in Google Scholar

[2] A.G. Bruccoleri, B.T. Sorenson, C.H. Langford, In: E.A. Ghabbour, G. Davies (Eds.), Humic substances: structures, models and functions (Royal Society of Chemistry, Cambridge, 2001) 193 Search in Google Scholar

[3] M. Hiraide, F.L. Ren, R. Tamura, A. Mizuike, Mikrochim. Acta 2, 137 (1987) in Google Scholar

[4] C.E. W. Steinberg, Ecology of Humic Substances in Freshwaters (Springer, Berlin, 2003) 440 10.1007/978-3-662-06815-1Search in Google Scholar

[5] K. Urano, H. Wada, T. Takemasa, Water Res. 17, 1797 (1983) in Google Scholar

[6] C. Kolokassidou, I. Pashalidis, C.N. Costa, A.M. Efstathiou, G. Buckau, Thermochim. Acta 454, 78 (2007) in Google Scholar

[7] G. Niessner, W. Buchberger, G.K. Bonn, Monatsh. Chem. 129, 597 (1998) 10.1007/s007060050079Search in Google Scholar

[8] R.F.M.J. Cleven, H.P.V. Leeuwen, Int. J. Anal. Chem. 27, 11 (1986) in Google Scholar

[9] M.H. Sorouradin, M. Hiraide, Y.S. Kim, H. Kawaguchi, Anal. Chim. Acta 281, 191 (1993) in Google Scholar

[10] P.R. Bloom, J.A. Leenheer, In: M.H.B. Hayes, P. MacCarthy, R.L. Malcolm, R.S. Swift (Eds.), Humic Substances II — In Search of Structure (Wiley, Chichester, 1989) Search in Google Scholar

[11] F.C. Wu, R.D. Evans, P.J. Dillon, Y.R. Cai, Appl. Geochem. 22, 1598 (2007) in Google Scholar

[12] G. Woelki, S. Friedrich, G. Hanschmann, R. Salzer, Fresenius’ J. Anal. Chem. 357, 548 (1997) in Google Scholar

[13] E.M. Balabanova-Radonova, M.D. Stefanova, R.N. Nikolov, Fuel 59, 271 (1980) in Google Scholar

[14] M. Fukushima, S. Tanaka, H. Nakamura, S. Ito, K. Haraguchi, T. Ogata, Anal. Chim. Acta 322, 173 (1996) in Google Scholar

[15] P. Van Rossum, R.G. Webb, J. Chromatogr. 150, 381 (1978) in Google Scholar

[16] M.T. Raewyn, H.K.J. Powell, Anal. Chim. Acta, 271, 195 (1993) in Google Scholar

[17] J. Hejzlar, J. Chudoba, Wat. Res. 20(10), 1209 (1986) in Google Scholar

[18] V. Lepane, J. Chromatogr. 845, 329 (1999) in Google Scholar

[19] A. Demirbas, Energy Sources 25, 23 (2003) 10.1080/00908310290142082Search in Google Scholar

[20] P. Burba, J. Rocha, D. Klockow, Fresenius J Anal. Chem. 349, 800 (1994) in Google Scholar

[21] C. Jimenez, J. Mertens, H.A.L. Rowland, C. Baciu, M. Berg, G. Furrer, S.J. Hug, E. Cordos, Presented at Goldsmith, Special Edition Geochim. et Cosmochim. Acta 73, A596 (2009) Search in Google Scholar

[22] M.L. Cheng, H.Y. Ho, Y.W. Huang, F.J. Lu, D.T.Y Chiiu. Exp. Boil. Med. 228, 413 (2003) 10.1177/153537020322800412Search in Google Scholar PubMed

[23] G. Abbt-Braun, U. Lankes, F.H. Frimmel, Aquat. Sci. 66, 151 (2004) in Google Scholar

[24] H. Langhals, G. Abbt-Braun, F.H. Frimmel, Acta Hydroch. Hydrob. 28, 329 (2000)<329::AID-AHEH329>3.0.CO;2-E10.1002/1521-401X(200012)28:6<329::AID-AHEH329>3.0.CO;2-ESearch in Google Scholar

[25] M. Klavins, V. Rodinov, I. Druvietis, Boreal Environ. Res. 8, 113 (2003) Search in Google Scholar

[26] T.M. Holsen, E.R. Taylor, Y.C. Seo, P.R. Anderson, Environ. Sci. Technol. 25, 1585 (1991) in Google Scholar

[27] K.T. Valsaraj, Sep. Sci. Technol. 27, 1633 (1992) in Google Scholar

[28] A. Ţenu, The hyperthermal water reservoirs from NW Romania (Academy Publ. House, Bucharest, 1981) 206 (In Romanian) Search in Google Scholar

[29] J. Buschmann, A. Kappeler, Environ. Sci.Technol. 40(19), 6015 (2006) in Google Scholar

Published Online: 2011-6-4
Published in Print: 2011-8-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.6.2023 from
Scroll to top button