Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 4, 2011

The computational modelling of the kinetics of ascorbic acid palmitate hydrolysis by lipase considering diffusion

Jurgita Dabulytė-Bagdonavičienė, Feliksas Ivanauskas and Valdemaras Razumas
From the journal Open Chemistry

Abstract

This paper presents mathematical and computational modelling of kinetics of a bioelectroanalytical system based on the interfacial action of hydrolytic enzyme. A system of non-linear differential equations with diffusion is used to describe the kinetics of Termomyces lanuginosa lipase (TLL) catalyzed hydrolysis of L-ascorbic acid palmitate (AAP). The system was solved numerically, and the kinetic prameters of AAP hydrolysis by the enzyme were determined. The experimental and modelling results show linear dependence of the rate of AAP hydrolysis on the TLL concentration. Complex dependence of the initial rate of bioelectrocatalytic current increase on the thickness of total diffusion layer (hydrodynamic diffusion layer plus thickness of dialysis membrane on the electrode surface) is also demonstrated and explained.

[1] S.R. Pinnell, H. Yang, M. Omar, N.M. Riviere, H.V. DeBuys, L.C. Walker, Y. Wang, M. Levine, Dermatol. Surg. 27, 137 (2001) http://dx.doi.org/10.1046/j.1524-4725.2001.00264.x10.1046/j.1524-4725.2001.00264.xSearch in Google Scholar

[2] Z. Tao, Y. Ren, W. Tong, D. Wei, Pharm. Rep. 57, 77 (2005) Search in Google Scholar

[3] D.L. Nelson, M.M. Cox, Leninger Principles of Biochemistry (Freeman, New York 2005) Search in Google Scholar

[4] M. Pokorski, M. Marczak, A. Dymecka, P. Suchocki, J. Biomed. Sci. 10, 193 (2003) http://dx.doi.org/10.1007/BF0225605410.1007/BF02256054Search in Google Scholar

[5] E. Sottofattori, M. Anazaldi, A. Balbi, G. Tonelio, J. Pharm. Biomed. Anal. 18, 213 (1998) http://dx.doi.org/10.1016/S0731-7085(98)00173-310.1016/S0731-7085(98)00173-3Search in Google Scholar

[6] C.C. Wang, A.M. Wu, Anal. Chim. Acta, 576, 124 (2006) http://dx.doi.org/10.1016/j.aca.2005.12.01710.1016/j.aca.2005.12.017Search in Google Scholar

[7] B. Kazakevičienė, PhD thesis, Institute of Biochemistry (Publishing House of Vilnius University, Vilnius, 2006) (in Lithuanian) Search in Google Scholar

[8] B. Kazakevičienė, G. Valinčius, G. Niaura, Z. Talaikytė, M. Kažemėkaitė, V. Razumas, J. Phys. Chem. B 107, 6661 (2003) http://dx.doi.org/10.1021/jp035048o10.1021/jp035048oSearch in Google Scholar

[9] G. Valinčius, G. Niaura, B. Kazakevičienė, Z. Talaikytė, M. Kažemėkaitė, E. Butkus, V. Razumas, Langmuir 20, 6631 (2004) http://dx.doi.org/10.1021/la036480010.1021/la0364800Search in Google Scholar

[10] B. Kazakevičienė, G. Valinčius, G. Niaura, Z. Talaikytė, M. Kažemėkaitė, V. Razumas, D. Plaušinaitis, A. Teišerskienė, V. Lisauskas, Langmuir 23, 4965 (2007) http://dx.doi.org/10.1021/la063216910.1021/la0632169Search in Google Scholar

[11] A. Houde, A. Kademi, D. Leblanc, Appl. Biochem. Biotech. 118, 155 (2004) http://dx.doi.org/10.1385/ABAB:118:1-3:15510.1385/ABAB:118:1-3:155Search in Google Scholar

[12] G. Valinčius, I. Ignatjev, G. Niaura, M. Kažemėkaitė, Z. Talaikytė, V. Razumas, A. Svendsen, Anal. Chem. 77, 2632 (2005) http://dx.doi.org/10.1021/ac048230+10.1021/ac048230+Search in Google Scholar PubMed

[13] I. Ignatjev, G. Valinčius, I. Švedaitė, E. Gaidamauskas. M. Kažemėkaitė, V. Razumas, A. Svendsen, Anal. Biochem. 344, 275 (2005) http://dx.doi.org/10.1016/j.ab.2005.06.01410.1016/j.ab.2005.06.014Search in Google Scholar PubMed

[14] M. Puida F. Ivanauskas, I. Ignatjev, G. Valinčius, V. Razumas, Nonlinear analysis: modelling and control 12(2), 245 (2007) 10.15388/NA.2007.12.2.14714Search in Google Scholar

[15] R. Verger, M.C.E. Mieras, G.H. De Haas, J. Biol. Chem. 248, 4023 (1973) 10.1016/S0021-9258(19)43833-7Search in Google Scholar

[16] K. Kumbhakart, T. Goel, T. Mukherjee, H. Pal, J. Phys. Chem. B 108, 19246 (2004) http://dx.doi.org/10.1021/jp046800410.1021/jp0468004Search in Google Scholar

[17] P. Becher, J. Phys. Chem. 66, 374 (1962) http://dx.doi.org/10.1021/j100808a51710.1021/j100808a517Search in Google Scholar

[18] P. Manimozhi, L. Rajendran, J. Electroanal. Chem. 647, 87 (2010) http://dx.doi.org/10.1016/j.jelechem.2010.05.01910.1016/j.jelechem.2010.05.019Search in Google Scholar

[19] R. Senthamarai, L. Rajendran, Electrochim. Acta. 55, 3223 (2010) http://dx.doi.org/10.1016/j.electacta.2010.01.01310.1016/j.electacta.2010.01.013Search in Google Scholar

[20] D.A. Gough, J.K Leypoldt, Anal. Chem. 51, 439 (1976) http://dx.doi.org/10.1021/ac50039a02810.1021/ac50039a028Search in Google Scholar

[21] A.A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, New York — Basel, 2001) http://dx.doi.org/10.1201/978020390851810.1201/9780203908518Search in Google Scholar

[22] R. Baronas, F. Ivanauskas, J. Kulys, et al., J. Math. Chem. 34, 227 (2003) http://dx.doi.org/10.1023/B:JOMC.0000004072.97338.1210.1023/B:JOMC.0000004072.97338.12Search in Google Scholar

[23] R. Baronas, J. Kulys, F. Ivanauskas, Biosens. Bioelectron. 19, 915 (2004) http://dx.doi.org/10.1016/j.bios.2003.08.02210.1016/j.bios.2003.08.022Search in Google Scholar PubMed

[24] R. Baronas, J. Kulys, F. Ivanauskas, J. Math. Chem. 39, 345 (2006) http://dx.doi.org/10.1007/s10910-005-9034-010.1007/s10910-005-9034-0Search in Google Scholar

[25] R. Baronas, F. Ivanauskas, J. Kulys, Mathematical Modeling of Biosensors. An Introduction for Chemists and Mathematicians (Springer, Springer Series on Chemical Sensors and Biosensors, Dordrecht, 2010) 10.1007/978-90-481-3243-0Search in Google Scholar

[26] J.B. Raoof, R. Ojani, R. Hosseinzaden, V. Dhasemi, Anal. Sci. 19, 1251 (2003) http://dx.doi.org/10.2116/analsci.19.125110.2116/analsci.19.1251Search in Google Scholar PubMed

[27] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001) Search in Google Scholar

Published Online: 2011-6-4
Published in Print: 2011-8-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow