Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 29, 2012

Preparation of a series of N-alkyl-3-boronopyridinium halides and study of their stability in the presence of hydrogen peroxide

Yevgen Karpichev, Hubert Matondo, Illia Kapitanov, Oleksandr Savsunenko, Marc Vedrenne, Verena Poinsot, Isabelle Rico-Lattes and Armand Lattes
From the journal Open Chemistry

Abstract

A simple and efficient protocol for the preparation of a series of N-alkyl-3-boronopyridinium salts is described which requires exposure of 3-pyridineboronic acid neopentylglycol ester and corresponding alkyle halide to microwave irradiation followed by boronic ester hydrolysis. The technique employed drastically reduces the reaction time and prevents thermal degradation and the formation of side products. Water solutions of the obtained boronopyridinium salts are shown to be stable at room temperature in wide pH range as well as in the presence of hydrogen peroxide at pH 10.0 for 72 h.

[1] D.G. Hall (Ed.), Boronic Acids. Preparation and Applications in Organic Synthesis and Medicine (Wiley-VCH, Weinheim, 2005) 549 10.1002/3527606548Search in Google Scholar

[2] P.N. Craig, In: C.J. Drayton (Ed.), Comprehensive Medicinal Chemistry (Pergamon Press, New York, 1991) Vol. 8 Search in Google Scholar

[3] A.L. Korich, P.M. Iovine. Dalton Trans. 39, 1423 (2010) http://dx.doi.org/10.1039/b917043j10.1039/B917043JSearch in Google Scholar PubMed

[4] N. Fujita, S. Shinkai, T.D. James. Chem. Asian J. 3, 1076 (2008) http://dx.doi.org/10.1002/asia.20080006910.1002/asia.200800069Search in Google Scholar PubMed

[5] T.D. James, M.D. Phillips, S. Shinkai, Boronic Acids in Saccharide Recognition (RSC Publishing, Cambridge, 2006) Search in Google Scholar

[6] T. Maki, S. Ishihara, H. Yamamoto, Org. Lett. 7(22), 5047 (2005) http://dx.doi.org/10.1021/ol052061d10.1021/ol052061dSearch in Google Scholar PubMed

[7] T. Maki, S. Ishihara, H. Yamamoto, Tetrahedron 63, 8645 (2007) http://dx.doi.org/10.1016/j.tet.2007.03.15710.1016/j.tet.2007.03.157Search in Google Scholar

[8] D.M. Davies, M.E. Deary, K. Quill, R.A. Smith, Chem. Eur. J. 11(12), 3552 (2005) http://dx.doi.org/10.1002/chem.20040120910.1002/chem.200401209Search in Google Scholar PubMed

[9] C.A. Bunton, H.J. Foroudian, A. Kumar. J. Chem. Soc. Perkin Trans. 2, 33, (1995) http://dx.doi.org/10.1039/p2995000003310.1039/p29950000033Search in Google Scholar

[10] H. Matondo, J.C. Garrigues, I. Rico-Lattes, A. Lattes, Appl. Organometal. Chem. 23, 191 (2009) http://dx.doi.org/10.1002/aoc.149310.1002/aoc.1493Search in Google Scholar

[11] A.F. Popov. Pure Appl. Chem. 80, 1381 (2008) http://dx.doi.org/10.1351/pac20088007138110.1351/pac200880071381Search in Google Scholar

[12] O. Savsunenko et al., J. Surfact. Deterg., DOI: 10.1007/s11743-011-1315-y 10.1007/s11743-011-1315-ySearch in Google Scholar

[13] L.K. Mohler, A.W. Czarnik, J. Am. Chem. Soc. 115, 2998 (1993) http://dx.doi.org/10.1021/ja00060a06710.1021/ja00060a067Search in Google Scholar

[14] R.S. Varma, V.V. Namboodiri, Pure Appl. Chem. 73(8), 1309 (2001) http://dx.doi.org/10.1351/pac20017308130910.1351/pac200173081309Search in Google Scholar

[15] C.O. Kappe, Angew. Chem., Int. Ed. 43, 6250 (2004) http://dx.doi.org/10.1002/anie.20040065510.1002/anie.200400655Search in Google Scholar

[16] D. Dallinger, H. Lehmann, J.D. Moseley, A. Stadler, C.O. Kappe, Org. Process Res. Dev. 15(4), 841 (2011) 10.1021/op200090kSearch in Google Scholar

[17] J.T. Tierney, P. Lindström (Eds.), Microwave-assisted Organic Synthesis (Blackwell, Oxford, 2005) http://dx.doi.org/10.1002/978144430554810.1002/9781444305548Search in Google Scholar

[18] N.E. Leadbeater, Microwave heating as a tool for sustainable chemistry (CRC Press, Boca Raton, 2011) 278 10.1201/9781439812709Search in Google Scholar

[19] G.W.V. Cave, C.L. Raston, J.I. Scott, Chem. Commun. 2159 (2001) 10.1039/b106677nSearch in Google Scholar

[20] S. Chatti, M. Bortolussi, A. Loupy, Tetrahedron, 57, 4365 (2001) http://dx.doi.org/10.1016/S0040-4020(01)00318-010.1016/S0040-4020(01)00318-0Search in Google Scholar

[21] H.P. Nguyen, H. Matondo, M. Baboulene, Green Chem. 5, 303 (2003) http://dx.doi.org/10.1039/b303892k10.1039/B303892KSearch in Google Scholar

[22] J. Kua, M.N. Fletcher, P.M. Iovine, J. Phys. Chem. A 110, 8158 (2006) http://dx.doi.org/10.1021/jp062055e10.1021/jp062055eSearch in Google Scholar PubMed

[23] J.C. Peprin, R.N. Keller. J. Am. Chem. Soc. 80, 182 (1958) http://dx.doi.org/10.1021/ja01534a04610.1021/ja01534a046Search in Google Scholar

[24] M. Deetflets, K.R. Seddon, Green Chem. 5, 181 (2003) http://dx.doi.org/10.1039/b300071k10.1039/b300071kSearch in Google Scholar

[25] R.N. Gedye, F.E. Smith, K.C. Wetaway, Can. J. Chem. 66, 17 (1988) http://dx.doi.org/10.1139/v88-00310.1139/v88-003Search in Google Scholar

[26] H. Kuivila. J. Am. Chem. Soc. 76, 870 (1954) http://dx.doi.org/10.1021/ja01632a07010.1021/ja01632a070Search in Google Scholar

[27] R. Glaser, N. Knotts J. Phys. Chem. A 110, 1295 (2006) http://dx.doi.org/10.1021/jp053658d10.1021/jp053658dSearch in Google Scholar

[28] F.C. Fisher, E. Havinga, Recl. Trav. Chim. Pays-Bas 93, 21 (1974) http://dx.doi.org/10.1002/recl.1974093011010.1002/recl.19740930110Search in Google Scholar

[29] D.E. Richardson, H. Yao, K.M. Frank, D.A. Bennett, J. Am. Chem. Soc. 122, 1729 (2000) http://dx.doi.org/10.1021/ja992746710.1021/ja9927467Search in Google Scholar

[30] Y. Kono, K. Ishira, A. Nagasawa, K. Umemoto, K. Saito, Inorg. Chim. Acta 262, 91 (1997) http://dx.doi.org/10.1016/S0020-1693(97)05499-610.1016/S0020-1693(97)05499-6Search in Google Scholar

[31] R. Pizer, Ch. Tihal. Inorg. Chem. 26(21), 3639 (1987) http://dx.doi.org/10.1021/ic00268a04610.1021/ic00268a046Search in Google Scholar

Published Online: 2012-5-29
Published in Print: 2012-8-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow