Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 29, 2012

Molecular dynamics simulation study of the diamond D5 substructures

Anahita Kyani and Mircea Diudea
From the journal Open Chemistry


Diamond D5 is the name proposed by Diudea for hyper-diamonds having their rings mostly pentagonal. Within D5, in crystallographic terms: the mtn structure, known in clathrates of type II, several substructures can be defined. In the present work, the structural stability of such intermediates/fragments appearing in the construction/destruction of D5 net was investigated using molecular dynamics simulation. Calculations were performed using an empirical many-body potential energy function for hydrocarbons. It has been found that, at normal temperature, the hexagonal hyper-rings are more stable while at higher temperature, the pentagonal ones are relatively more resistant against heat treatment.

[1] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerens and Carbon Nanotubes (Academic Press, New York, 1996) Search in Google Scholar

[2] M.V. Diudea, Cs.L. Nagy, Periodic Nanostructures (Springer, Netherlands, 2007) in Google Scholar

[3] B.F. Pan, D.X. Cuiị, P. Xu, T. Huang, Q. Li, R. He, F. Gao, J. Biomed. Pharmaceut. Eng. 1, 13 (2007) Search in Google Scholar

[4] M.V. Diudea, Studia Univ. Babes-Bolyai, Chemia 55, 11 (2010) Search in Google Scholar

[5] S.V. Sarantseva, O.I. Bolshakova, S.I. Timoshenko, A.A. Kolobov, A.L. Schwarzman, Bull. Experim. Biol. Med. 150, 402 (2010) 10.1007/s10517-011-1160-zSearch in Google Scholar

[6] G. Benedek, L. Colombo, Mater. Sci. Forum 232, 247 (1996) in Google Scholar

[7] X. Blase, G. Benedek, M. Bernasconi, In: L. Colombo, A. Fasolino (Eds.), Computer-based modeling of novel carbon systems and their properties. Beyond nanotubes (Springer, London, 2010) Search in Google Scholar

[8] T. Aste, D. Weaire, The pursuit of perfect packing, 2nd edition (Taylor and Francis, London, 2008) in Google Scholar

[9] M. Dutour Sikirić, O. Delgado-Friedrichs, M. Deza, Acta Cryst. A66, 602 (2010) 10.1107/S0108767310022932Search in Google Scholar

[10] M.V. Diudea, Cs.L. Nagy, A. Ilić, In: M.V. Putz (Ed.), Carbon Bonding and Structures, (Springer, London, 2011) Search in Google Scholar

[11] L.A. Paquette, D.W. Balogh, R. Usha, D. Kountz, G.G. Christoph, Science 211, 575 (1981) in Google Scholar

[12] H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, B. von Issendorff, Nature 407, 60 (2000) in Google Scholar

[13] M. Saito, Y. Miyamoto, Phys. Rev. Lett. 87, 035503 (2001) in Google Scholar

[14] H. Prinzbach, F. Wahl, A. Weiler, P. Landenberger, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, F. Sommer, B. von Issendorff, Chem. Eur. J. 12, 6268 (2006) in Google Scholar

[15] H.E. Simmons, III, J.E. Maggio, Tetrahedron Lett. 22, 287 (1981) in Google Scholar

[16] L.A. Paquette, M. Vazeux, Tetrahedron Lett. 22, 291 (1981) in Google Scholar

[17] D. Gestmann, H. Pritzkow, D. Kuck, Liebigs Ann (Eng). 1349 (1996) 10.1002/jlac.199619960903Search in Google Scholar

[18] D. Kuck, Chem. Rev. 106, 4885 (2006) in Google Scholar

[19] S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000) in Google Scholar

[20] S. Plimpton, J. Comp. Phys. 117, 1 (1995) in Google Scholar

[21] D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002) in Google Scholar

[22] D.W. Brenner, Phys. Stat. Sol. 217, 23 (2000)<23::AID-PSSB23>3.0.CO;2-N10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO;2-NSearch in Google Scholar

[23] L. Verlet, Phys. Rev. 159, 98 (1967) in Google Scholar

[24] L. Verlet, Phys. Rev. 165, 201 (1968) in Google Scholar

Published Online: 2012-5-29
Published in Print: 2012-8-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow