Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 29, 2012

CORAL: the prediction of biodegradation of organic compounds with optimal SMILES-based descriptors

Andrey Toropov, Alla Toropova, Anna Lombardo, Alessandra Roncaglioni, Nicoletta Brita, Giovanni Stella and Emilio Benfenati
From the journal Open Chemistry

Abstract

CORAL software (http:/www.insilico.eu/coral) has been used to build up quantitative structure-biodegradation relationships (QSPR). The normalized degradation percentage has been used as the measure of biodegradation (for diverse organic compounds, n=445). Six random splits into sub-training, calibration, and test sets were examined. For each split the QSPR one-variable linear regression model based on the SMILES-based optimal descriptors has been built up. The average values of numbers of compounds and the correlation coefficients (r2) between experimental and calculated biodegradability values of these six models for the test sets are n=88.2±11.7 and r2=0.728±0.05. These six models were further tested against a set of chemicals (n=285) for which only categorical values (biodegradable or not) were available. Thus we also evaluated the use of the model as a classifier. The average values of the sensitivity, specificity, and accuracy were 0.811±0.019, 0.795±0.024, and 0.803±0.008, respectively.

[1] A. Sabljic, Chemosphere 43, 363 (2001) http://dx.doi.org/10.1016/S0045-6535(00)00084-910.1016/S0045-6535(00)00084-9Search in Google Scholar

[2] P. Gramatica, F. Consolaro, S. Pozzi, Chemosphere 43, 655 (2001) http://dx.doi.org/10.1016/S0045-6535(00)00418-510.1016/S0045-6535(00)00418-5Search in Google Scholar

[3] V. Uddameri, M. Kuchanur, Chemosphere 54, 771 (2004) http://dx.doi.org/10.1016/j.chemosphere.2003.08.02310.1016/j.chemosphere.2003.08.023Search in Google Scholar PubMed

[4] S. Dimitrov, D. Nedelcheva, N. Dimitrova, O. Mekenyan, Sci. Tot. Environ. 408, 3811 (2010) http://dx.doi.org/10.1016/j.scitotenv.2010.02.00810.1016/j.scitotenv.2010.02.008Search in Google Scholar PubMed

[5] E. Papa, P. Gramatica, J. Mol. Graph. Model. 27, 59 (2008) http://dx.doi.org/10.1016/j.jmgm.2008.02.00410.1016/j.jmgm.2008.02.004Search in Google Scholar PubMed

[6] A. Mostrąg, T. Puzyn, M. Haranczyk, Environ. Sci. Pollut. Res. 17, 470 (2010) http://dx.doi.org/10.1007/s11356-009-0257-710.1007/s11356-009-0257-7Search in Google Scholar PubMed

[7] T. Puzyn, M. Haranczyk, N. Suzuki, T. Sakurai, Mol Divers 15, 173 (2011) http://dx.doi.org/10.1007/s11030-010-9250-910.1007/s11030-010-9250-9Search in Google Scholar PubMed

[8] M. Pavan, A.P. Worth, QSAR Comb. Sci. 27, 32 (2007) http://dx.doi.org/10.1002/qsar.20071011710.1002/qsar.200710117Search in Google Scholar

[9] A. Sabljic, W. Peijnenburg, Pure Appl. Chem. 73, 1331 (2001) http://dx.doi.org/10.1351/pac20017308133110.1351/pac200173081331Search in Google Scholar

[10] J.R. Baker, D. Gamberger, J.R. Mihelcic, A. Sabljic, Molecules 9, 989 (2004) http://dx.doi.org/10.3390/9120098910.3390/91200989Search in Google Scholar PubMed PubMed Central

[11] OECD 301c: Ready Biodegradability — MODIFIED MITI TEST (I) Search in Google Scholar

[12] T. Junker, C. Paatzsch, T. Knacker, Sci. Tot. Environ. 408, 3803 (2010) http://dx.doi.org/10.1016/j.scitotenv.2009.11.01110.1016/j.scitotenv.2009.11.011Search in Google Scholar PubMed

[13] J. Hermens, S. Balaz, J. Damborsky, W. Karcher, M. Müller, W. Peijnenburg, A. Sabljic, M. Sjöström, SAR QSAR Environ. Res. 3, 223 (1995) http://dx.doi.org/10.1080/1062936950823400610.1080/10629369508234006Search in Google Scholar PubMed

[14] M. Karelson; V.S. Lobanov, A.R. Katritzky, Chem. Rev. 96, 1027 (1996) http://dx.doi.org/10.1021/cr950202r10.1021/cr950202rSearch in Google Scholar PubMed

[15] P.K. Ojha, I. Mitra, R.N. Das, K. Roy, Chemometr. Intel. Lab. 107, 194 (2011) http://dx.doi.org/10.1016/j.chemolab.2011.03.01110.1016/j.chemolab.2011.03.011Search in Google Scholar

[16] L.M.A. Mullen, P.R. Duchowicz, E.A. Castro, Chemometr. Intel. Lab. 107, 269 (2011) http://dx.doi.org/10.1016/j.chemolab.2011.04.01110.1016/j.chemolab.2011.04.011Search in Google Scholar

[17] R.S. Boethling, A. Sabljić, Environ. Sci. Technol. 23, 672 (1989) http://dx.doi.org/10.1021/es00064a00510.1021/es00064a005Search in Google Scholar

[18] OECD toolbox v2.0: http://www.oecd.org/document/54/0,3746,en_2649_34379_42923638_1_1_1_1,00.html Search in Google Scholar

[19] EPISuite v4.1: http://www.epa.gov/opptintr/exposure/pubs/episuite.htm Search in Google Scholar

[20] J. Tunkel, P.H. Howard, R.S. Boethling, W. Stiteler, H. Loonen, Environ. Toxicol. Chem. 19, 2478 (2000) http://dx.doi.org/10.1002/etc.562019101310.1002/etc.5620191013Search in Google Scholar

[21] L. Han, Y. Wang, S.R. Bryant, Bioinformatics 9, 401 (2008) 10.1186/1471-2105-9-401Search in Google Scholar PubMed PubMed Central

[22] H. Kusuc, B. Rasulev, D. Lesczcynska, J. Leszczynski, N. Koprivanac, Chemosphere 75, 1128, (2009) http://dx.doi.org/10.1016/j.chemosphere.2009.01.01910.1016/j.chemosphere.2009.01.019Search in Google Scholar PubMed

Published Online: 2012-5-29
Published in Print: 2012-8-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow