Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 21, 2012

Synthesis, characterization and adsorption properties of nanostructured hybrid materials modified by boron and zirconium

  • Ralitsa Georgieva EMAIL logo , Paunka Vassileva , Albena Detcheva , Dimitrinka Voykova , Tsvetelina Gerganova and Yordanka Ivanova
From the journal Open Chemistry


The adsorption properties of two new nanostructured hybrid materials containing B2O3 and ZrO2 were studied. The new organic-inorganic materials were synthesized via a sol-gel method. As a modifying agent, a quantity of 10 wt.% Zr(OPr)4 or B(OCH3)3 was added. The structure of the hybrid materials was investigated by means of (Fourier transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), scanning electron microscopy (SEM), (atomic force microscopy (AFM) and nuclear magnetic resonance spectroscopy (NMR). Based on the obtained data, the most probable cross-linking mechanism for the derived gels was proposed. The characterization of texture parameters of both materials was carried out with the use of low-temperature adsorption of nitrogen. Adsorption of Cu(II), Fe(III), Cr(III), Cd(II) and Pb(II) ions on both materials was investigated using multi-component solutions with different concentrations and acidity by means of the batch method. Kinetics of adsorption was also investigated. Pseudo-first order, pseudo-second order and intraparticle diffusion models were used to analyze kinetic data. The adsorption was significantly affected by the pH value. Equilibrium data were fitted to linear Langmuir, Freundlich and Dubinin-Radushkevich models and maximum adsorption capacities were calculated.

[1] T. Gunji, M. Okogawa, M. Hongo, Y. Abe, J. Polym. Sci., Part A: Polym. Chem. 43, 763 (2005) in Google Scholar

[2] M.C. Goncalves, V. de Z. Bermudez, D. Ostrovskii, L.D. Carlos, Electrochim. Acta 48, 1977 (2003) in Google Scholar

[3] G. Chernev, B. Borisova, L. Kabaivanova, I.M. Salvado, Cent. Eur. J. Chem. 8, 870 (2010) in Google Scholar

[4] L. Kabaivanova, G. Chernev, I.M. Salvado, M.H.V. Fernandes, Cent. Eur. J. Chem. 9, 232 (2011) in Google Scholar

[5] P. Tzvetkova, P. Vassileva, N. Nikolova, L. Lakov, O. Peshev, J. Mater. Sci. 39, 2209 (2004) in Google Scholar

[6] M.E. Mahmoud, O.F. Hafez, M.M. Osman, A.A. Yakout, A. Alrefaay, J. Hazard. Mater. 176, 906 (2010) in Google Scholar PubMed

[7] A. Detcheva, P. Vassileva, R. Georgieva, D. Voykova, T. Gerganova, Y. Ivanova, Cent. Eur. J. Chem. 9, 932 (2011) in Google Scholar

[8] A. Detcheva, P. Vassileva, R. Georgieva, Comp. Rend. Acad. Bulg. Sci. 64, 815 (2011) Search in Google Scholar

[9] M.M. Silva, S.C. Nunes, P.C. Barbosa, A. Evansa, V. de Z. Bermudez, M.J. Smith, D. Ostrovskii, Electrochim. Acta 52, 1542 (2006) in Google Scholar

[10] S. Dire, R. Ceccato, F. Babonneau, J. Sol-Gel Sci. Technol. 34, 53 (2005) in Google Scholar

[11] A. Al Jaafari, Am. J. App. Sci. 7, 171 (2010) in Google Scholar

[12] C.B. Sih, O.M. Wolf, Chem. Commun. 27, 3375 (2005) in Google Scholar PubMed

[13] C. Sanchez, B. Julián, P. Belleville, M. Popall, J. Mater. Chem. 15, 3559 (2005) in Google Scholar

[14] P. Gómez-Romero, K. Cuentas-Gallegos, M. Lira-Cantu, N. Casan-Pastor, J. Mater. Sci. 40, 1423 (2005) in Google Scholar

[15] Y. Ivanova, Y. Dimitriev, T. Gerganova, R. Bryaskova, M.H.V. Fernandes, I.M. Salvado, Cent. Eur. J. Chem. 3, 452 (2005) in Google Scholar

[16] Y. Ivanova, T. Gerganova, Y. Dimitriev, I.M. Salvado, M.H.V. Fernandes, Thin Solid Films. 515, 271 (2006) in Google Scholar

[17] Y. Ivanova, T. Gerganova, Y. Dimitriev, I. Salvado, M. Fernandes, A. Wu, Phys. Chem. Glasses: Eur. J. Glass. Sci. Technol. B48, 251 (2007) Search in Google Scholar

[18] Y. Ivanova, Ts. Gerganova, M.H.V. Fernandes, I.M. Salvado, Cent. Eur. J. Chem. 7, 42 (2009) in Google Scholar

[19] Y. Ivanova, T. Gerganova, Y. Vueva, I.M.M. Salvado, M.H.V. Fenandes, Inter. J. Nanomanufacturing 5, 152 (2010) in Google Scholar

[20] T.R.R. Saraidarov, A. Saschiuk, E. Lifshitz, J. Sol-Gel Sci. Technol. 26, 533 (2003) in Google Scholar

[21] P. Colombo, J. Sol-Gel Sci. Technol. 2, 601 (1994) in Google Scholar

[22] M. Guglielmi, J. Sol-Gel Sci. Technol. 8, 443 (1997) 10.1007/BF02436880Search in Google Scholar

[23] S. Sakka, Handbook of sol-gel science and technology-processing, characterization and applications (Kluwer Academic Publishers, New York, 2004) Search in Google Scholar

[24] M. Smaihi, J.-C. Schrotter, C. Lesimple, I. Prevost, C. Guizard, J. Memb. Sci. 161, 157 (1999) in Google Scholar

[25] T. Gerganova, Y. Ivanova, I.M.M. Salvado, M.H.V. Fernandes, In: R. Morris (Ed.), The Sol-Gel Process: Uniformity, Polymers and Applications, Chapter 12: Isocyanate modified silanes as a new generation precursors in the sol-gel technology: From materials design to application (Nova Science Publishers, Inc, New York, 2010) 495 Search in Google Scholar

[26] H. Günzler, H. Gremlich, H. Heise, M. Blumich, IR Spectroscopy: An Introduction (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2002) Search in Google Scholar

[27] B. Stuart, Infrared Spectroscopy: Fundamentals and Applications, (John Wiley and Sons Ltd, Chichester, UK, 2004) in Google Scholar

[28] B. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, New York, 1996) Search in Google Scholar

[29] R. Pena-Alonso, J. Rubio, F. Rubio, J.L. Oteo, J. Sol-Gel Sci. Tech. 25, 255 (2002) in Google Scholar

[30] G.D. Soraru, S.M. Guadagnino, P. Colombo, J. Egan, C. Pontano, J. Am. Ceram. Soc. 85, 1529 (2002) in Google Scholar

[31] A.S. Abd-El-Aziz, C.E. Carraher, C.U. Pittman, M. Zeldin, In: R.H. Neilson (Ed.), Macromolecules Containing Metal and Metal-Like Elements, Volume 8: Boron-Containing Polymers, (John Wiley & Sons, Inc., Hoboken, New York, 2007) in Google Scholar

[32] K.J.D. Mackenzie, M.E. Smith, Multinuclear Solid-state NMR of Inorganic Materials (Elsevier Science Ltd, New York, 2002) Search in Google Scholar

[33] R. Corriu, Eur. J. Inorg. Chem. 2001, 1109 (2001)<1109::AID-EJIC1109>3.0.CO;2-Z10.1002/1099-0682(200105)2001:5<1109::AID-EJIC1109>3.0.CO;2-ZSearch in Google Scholar

[34] P. Vassileva, A. Detcheva, Adsorpt. Sci. Technol. 28, 229 (2010) in Google Scholar

[35] H. Leinonen, J. Letho, Waste Manag. Res. 19, 45 (2001) in Google Scholar

[36] Y.S. Ho, G. Mckay, Process Biochem. 34, 451 (1999) in Google Scholar

[37] W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. AM Soc. Civ. Eng. 89, 31 (1963) 10.1061/JSEDAI.0000430Search in Google Scholar

[38] S.J. Allen, G. McKay, K.Y.H. Khader, Environ. Pollut. 56, 39 (1989) in Google Scholar

[39] Y.S. Ho, G. McKay, Process Biochem. 38, 1047 (2003) in Google Scholar

[40] G. McKay, M.S. Otterburn, J.A. Aga, Water Air Soil Pollut. 24, 307 (1985) in Google Scholar

[41] G. Bayramoglu, B. Altintas, M.Y. Arica, Chem. Eng. J. 152, 339 (2009) in Google Scholar

[42] N. Kannan, S. Murogavel, Global Nest J. 10, 395 (2008) Search in Google Scholar

[43] P. Vassileva, A. Detcheva, Int. J. Coal. Prep. Util. 31, 242 (2011) in Google Scholar

[44] E.S. Samra, Adsorpt. Sci. Technol. 18, 761 (2000) in Google Scholar

[45] M.M. Rao, G.P.C. Rao, K. Seshaiah, N.V. Choudary, M.C. Wang, Waste Manage. 28, 849 (2008) in Google Scholar PubMed

[46] M. Puanngam, F. Uno, J. Hazard. Mat. 154, 578 (2008) in Google Scholar PubMed

[47] P. Vassileva, D. Voikova, J. Hazard. Mat. 170, 948 (2009) in Google Scholar PubMed

[48] E.B. Reed, J. Maqbul, B. Tomas, Water Environ. Res. 68, 877 (1996) in Google Scholar

[49] M.J. Smith, Chemical Engineering Kinetics (McGraw-Hill Chemical Engineering Series, McGraw-Hill Companies, New York, 1981) Search in Google Scholar

Published Online: 2012-7-21
Published in Print: 2012-10-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 4.12.2023 from
Scroll to top button