Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 21, 2012

Comparison of structure, logP and P388 cytotoxicity of some phenyl and ferrocenyl cyclic chalcone analogues. Application of RP-TLC for logP determination of the ferrocenyl analogues

  • Pál Perjési EMAIL logo , Krisztina Takács-Novák , Zsuzsanna Rozmer , Pál Sohár , Richard Bozak and Theresa Allen
From the journal Open Chemistry

Abstract

Cyclic chalcone analogues (2–5) and their ferrocenyl counterparts (6–10) were synthesized and their logP and P388 cyctotoxity were investigated. The structures of the newly synthesized compounds were confirmed by IR 1H and 13NMR spectroscopy. Comparison of conjugation and stereochemistry of the respective derivatives showed similar characteristics compared to ones with some higher degree of conjugation in the ferrocenyl series. Comparison of logP of the ferrocenyl derivatives determined by a validated RP-TLC method showed the ferrocenyl derivatives to have higher logP TLC. The results demonstrate that the differences in three dimensional shape, conjugation and lipophilicity do not have strong influence on the P388 cytotoxicity of the investigated phenyl (1−5) and ferrocenyl (6−10) enones.

[1] I. Kron, Z. Pudychová-Chovanová, B. Veliká, J. Guzy, P. Perjési, Monatsh. Chem. 143, 13 (2012) http://dx.doi.org/10.1007/s00706-011-0633-010.1007/s00706-011-0633-0Search in Google Scholar

[2] V. Zsoldos-Mády, O. Ozohanics, A. Csámpai, V. Kudar, D. Frigyes, P. Sohár, J. Organomet. Chem. 694, 4185 (2009) http://dx.doi.org/10.1016/j.jorganchem.2009.09.00710.1016/j.jorganchem.2009.09.007Search in Google Scholar

[3] J.B. Harborne, In: V. Cody, E. Middleton Jr., E. Harborne (Eds.), Plant flavonoids in Biology and Medicine: Biochemical, pharmacological and structure-activity relationships (Alan R. Liss. Inc., New York, 1986) 15 Search in Google Scholar

[4] J.R. Dimmock, D.W. Elias, M.A. Beazely, N.M. Kandepu, Curr. Med. Chem. 6, 1125 (1999) 10.2174/0929867306666220401182509Search in Google Scholar

[5] M.L. Go, X. Wu, X.L. Liu, Curr. Med. Chem. 12, 483 (2005) http://dx.doi.org/10.2174/092986705336315310.2174/0929867053363153Search in Google Scholar

[6] J.R. Dimmock, N.M. Kandepu, A.J. Nazarali, T.P. Kowalchuk, N. Motaganahalli, J.W. Quail, P. Mykytiuk, G.F. Audette, L. Prasad, P. Perjési, T.M. Allen, C.L. Santos, J. Szydlowski, E. De Clercq, J. Balzarini, J. Med. Chem. 42, 1358 (1999) http://dx.doi.org/10.1021/jm980669510.1021/jm9806695Search in Google Scholar

[7] J.R. Dimmock, G.A. Zello, E.O. Oloo, J.W. Quail, H-B. Kraatz, P. Perjési, K. Takács-Novák, F. Aradi, T.M. Allen, C.L. Santos, J. Balzarini, E. DeClerq, J.P. Stables, J. Med. Chem. 45, 3103 (2002) http://dx.doi.org/10.1021/jm010559p10.1021/jm010559pSearch in Google Scholar

[8] P. Perjési, U. Das, E. De Clercq, J. Balzarini, M. Kawase, H. Sakagami, J.P. Stables, T. Loránd, Zs. Rozmer, J.R. Dimmock, Eur. J. Med. Chem. 43, 839 (2008) http://dx.doi.org/10.1016/j.ejmech.2007.06.01710.1016/j.ejmech.2007.06.017Search in Google Scholar

[9] A. Valkonen, K. Laihia, E. Kolehmainen, R. Kauppinen, P. Perjési, Struct. Chem. 23, 209 (2012) http://dx.doi.org/10.1007/s11224-011-9860-610.1007/s11224-011-9860-6Search in Google Scholar

[10] P. Perjési, T. Nusser, Gy. Tarczay, P. Sohár, J. Mol. Struct. 479, 13 (1999) http://dx.doi.org/10.1016/S0022-2860(98)00805-910.1016/S0022-2860(98)00805-9Search in Google Scholar

[11] P. Perjési, Zs. Bayer, I. Ember, Anticancer Res. 20, 475 (2000) Search in Google Scholar

[12] K. Monostory, V. Tamási, L. Vereczkey, P. Perjési, Toxicology 184, 203 (2003) http://dx.doi.org/10.1016/S0300-483X(02)00578-410.1016/S0300-483X(02)00578-4Search in Google Scholar

[13] Zs. Rozmer, T. Berki, P. Perjési, Toxicol. in Vitro 20, 1354 (2006) http://dx.doi.org/10.1016/j.tiv.2006.05.00610.1016/j.tiv.2006.05.006Search in Google Scholar

[14] P. Perjési, J. Kubalkova, Z. Chovanova, M. Marekova, Zs. Rozmer, K. Fodor, Z. Chavkova, V. Tomeckova, J. Guzy, Pharmazie 63, 899 (2008) Search in Google Scholar

[15] C. Hansch, A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology (John Wiley and Sons, New York, 1979) Search in Google Scholar

[16] W.Y. Liu, T. Xie, Y.M. Liang, W.M. Liu, Y.X. Ma, J. Organometallic Chem. 627, 93 (2001) http://dx.doi.org/10.1016/S0022-328X(01)00717-310.1016/S0022-328X(01)00717-3Search in Google Scholar

[17] C. Biot, Curr. Med. Chem. — Anti-Infective Agents 3, 135 (2004) http://dx.doi.org/10.2174/156801204335400810.2174/1568012043354008Search in Google Scholar

[18] S. Top, A. Vessières, C. Cabestaing, et al. J. Organometallic Chem. 500, 637 (2001) 10.1016/S0022-328X(01)00953-6Search in Google Scholar

[19] R. Kovjazin, T. Eldar, M. Patya, A. Vanichkin, H.M. Lander, A. Novogrodsky, FASEB J. 17, 467 (2003) 10.1096/fj.02-0558fjeSearch in Google Scholar PubMed

[20] E. Hillard, A. Vessieres, F. Le Bideau, D. Plazuk, D. Spera, M. Huche, G. Jaouen, Chem. Med. Chem. 1, 551 (2006) 10.1002/cmdc.200500035Search in Google Scholar PubMed

[21] S.V. Lindeman, R.E. Bozak, R.J. Hicks, S. Husebye, Acta Chem. Scand. 51, 966 (1997) http://dx.doi.org/10.3891/acta.chem.scand.51-096610.3891/acta.chem.scand.51-0966Search in Google Scholar

[22] X. Wu, E. R.T. Tiekink, I. Kostetski, N. Kocherginsky, A. L.C. Tan, S. B. Khoo, P. Wilairat, M.-L. Go, Eur. J. Pharm. Sci. 27, 175 (2006) http://dx.doi.org/10.1016/j.ejps.2005.09.00710.1016/j.ejps.2005.09.007Search in Google Scholar PubMed

[23] M.S. Tute, Lipophilicity: A History. In: R. Mannhold, H. Kubiny, H. Timmerman (Eds.) Methods and Principles in Medicinal Chemistry, Vol. 4 — V. Pliska, B. Testa, H. van de Waterbeemd, Lipophilicity in Drug Action and Toxicology (VHC Publishers, Inc., Weinheim, FRG, 1996) 7–26 Search in Google Scholar

[24] K. Takács-Novák, P. Perjési, J. Vámos, JPC-J. Planar Chrom. 14, 42 (2001) Search in Google Scholar

[25] P. Perjési, M. Takács, E. Ősz, Z. Pintér, J. Vámos, K. Takács-Novák, J. Chromatogr. Sci. 43, 289 (2005) Search in Google Scholar

[26] Zs. Rozmer. P. Perjési, K. Takács-Novák, J. Planar Chrom. — Modern TLC 19, 124 (2006) http://dx.doi.org/10.1556/JPC.19.2006.2.710.1556/JPC.19.2006.2.7Search in Google Scholar

[27] M.H. Abraham, N. Benjelloun-Dakhama, J.M.R. Gola, W.E. Jr. Acree, W.S. Cain, J.E. Cometto-Muniz, New J. Chem. 24, 825 (2000) http://dx.doi.org/10.1039/b004291i10.1039/b004291iSearch in Google Scholar

[28] P. Sohár, P. Perjési, K.W. Törnroos, S. Husebye, A. Vértes, Gy. Vankó, R.E. Bozak, J. Mol. Struct. 524, 297 (2000) http://dx.doi.org/10.1016/S0022-2860(00)00380-X10.1016/S0022-2860(00)00380-XSearch in Google Scholar

[29] O.A. Phillips, L.A. Nelson, E.E. Knaus, T.M. Allen, R. Fathi-Afshar, Drug Des. Deliv. 4, 121 (1989) Search in Google Scholar

[30] P. Perjési, A. Perjessy, E. Kolehmainen, E. Ősz, M. Samalikova, E. Virtanen, J. Mol Struct. 697, 41 (2004) http://dx.doi.org/10.1016/j.molstruc.2004.02.00610.1016/j.molstruc.2004.02.006Search in Google Scholar

[31] P. Perjési, J. Linnanto, E. Kolehmainen, E. Ősz, E. Virtanen, J. Mol. Struct. 740, 81 (2005) http://dx.doi.org/10.1016/j.molstruc.2004.10.01310.1016/j.molstruc.2004.10.013Search in Google Scholar

[32] A. Hoser, Z. Kaluski, H. Maluszynska, V.D. Orlov, Acta Crystallogr. B36, 1256 (1980) 10.1107/S0567740880005821Search in Google Scholar

[33] Z. Kaluski, E. Skrzypczak-Jankun, V.D. Orlov, I.A. Borovoi, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 26, 869 (1978) Search in Google Scholar

[34] P. Sohár, A. Csámpai, P. Perjési, Arkivok (V),114 (2003) 10.3998/ark.5550190.0004.511Search in Google Scholar

[35] A. Katrusiak, M. Ratajczak-Sitarz, Z. Kaluski, V.D. Orlov, Acta Crystallogr. C43, 103 (1987) 10.1107/S0108270187096847Search in Google Scholar

Published Online: 2012-7-21
Published in Print: 2012-10-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-012-0088-0/html
Scroll to top button