Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 21, 2012

Catalytic reduction of sulfuric acid to sulfur dioxide

Ancuţa Balla, Cristina Marcu, Damian Axente, Gheorghe Borodi and Diana Lazăr
From the journal Open Chemistry

Abstract

The reduction of H2SO4 to SO2 occurs with a relatively good efficiency only at high temperatures, in the presence of catalysts. Some experimental results, regarding conversion of sulfuric acid (96 wt.%) to sulfur dioxide and oxygen, are reported. The reduction has been performed at 800 – 900°C and atmospheric pressure, in a tubular quartz reactor. The following commercial catalysts were tested: Pd/Al2O3 (5 wt.% and 0.5 wt.% Pd), Pt/Al2O3 (0.1 wt.% Pt) and α-Fe2O3. The fresh and spent catalysts were characterized by X-Ray diffraction and BET method. The highest catalytic activity was determined for 5 wt.% Pd/Al2O3, a conversion of 80% being obtained for 5 hours time on stream, at 9 mL h−1 flow rate of 96 wt.% H2SO4. A conversion of 64% was determined for 0.5 wt.% Pd/Al2O3 and 0.1 wt.% Pt/Al2O3. For α-Fe2O3, a less expensive catalyst, a conversion of 61% for about 60 hours was obtained.

[1] S. Brutti, L. Bencivenni, V. Barbarossa, S. Sau, G. De Maria, J. Chem. Thermodynamics 38, 1292 (2006) http://dx.doi.org/10.1016/j.jct.2006.02.00910.1016/j.jct.2006.02.009Search in Google Scholar

[2] D. Schwartz, R. Gadiou, J.F. Brilhac, G. Prado, G. Martinez, Ind. Eng. Chem. Res. 39, 2183 (2000) http://dx.doi.org/10.1021/ie990801e10.1021/ie990801eSearch in Google Scholar

[3] L.E. Brecher, S. Spewock, C.J. Warde, Int. J. Hydrogen Energy 2, 7 (1977) http://dx.doi.org/10.1016/0360-3199(77)90061-110.1016/0360-3199(77)90061-1Search in Google Scholar

[4] G.H. Farbman, Int. J. Hydrogen Energy 4, 111 (1979) http://dx.doi.org/10.1016/0360-3199(79)90045-410.1016/0360-3199(79)90045-4Search in Google Scholar

[5] G.E. Beghi, Int. J. Hydrogen Energy 11, 761 (1986) http://dx.doi.org/10.1016/0360-3199(86)90172-210.1016/0360-3199(86)90172-2Search in Google Scholar

[6] J.H. Norman, G.E. Besenbruch, L.C. Brown, D.R. O’Keefe, C.L. Allen, General Atomics Report GA-A16713, DOE Report DOE/ET/26225-1, May 1982. Available on-line at http://www.osti.gov/bridge/servlets/purl/5063416-Hhmrtj/5063416.pdf Search in Google Scholar

[7] R. Buckingham, B. Russ, L. Brown, G.E. Besenbruch, General Atomics Annual Report, November 2004. Available on-line at http://www.osti.gov/bridge/servlets/purl/834680-0cKoDQ/native/834680.pdf Search in Google Scholar

[8] J.F. Pierre, R.L. Ammon, in: Proceedings of the 4th World Hydrogen Energy Conference 2, 703 (1982) Search in Google Scholar

[9] M. Dokiya, T. Kameyama, K. Fukuda, Y. Kotera, Bull. Chem. Soc. Jap. 50, 2657 (1977) http://dx.doi.org/10.1246/bcsj.50.265710.1246/bcsj.50.2657Search in Google Scholar

[10] J.H. Norman, K.J. Mysels, R. Sharp, D. Williamson, Int. J. Hydrogen Energy 7, 545 (1982) http://dx.doi.org/10.1016/0360-3199(82)90035-010.1016/0360-3199(82)90035-0Search in Google Scholar

[11] L.N. Yannopoulos, J.F. Pierre, Int. J. Hydrogen Energy 9, 383 (1984) http://dx.doi.org/10.1016/0360-3199(84)90058-210.1016/0360-3199(84)90058-2Search in Google Scholar

[12] G. Karagiannakis, C.C. Agrafiotis, A. Zygogianni, C. Pagkoura, A.G. Konstandopoulos, Int. J. Hydrogen Energy 36, 2831 (2011) http://dx.doi.org/10.1016/j.ijhydene.2010.11.08310.1016/j.ijhydene.2010.11.083Search in Google Scholar

[13] A. Giaconia, S. Sau, C. Felici, P. Tarquini, G. Karagiannakis, C. Pagkoura, C. Agrafiotis, A.G. Konstandopoulos, D. Thomey, L. de Oliveira, M. Roeb, C. Sattler, Int. J. Hydrogen Energy 36, 6496 (2011) http://dx.doi.org/10.1016/j.ijhydene.2011.02.13710.1016/j.ijhydene.2011.02.137Search in Google Scholar

[14] D.M. Ginosar, L.M. Petkovic, A.W. Glenn, K.C. Burch, Int. J. Hydrogen Energy 32, 482 (2007) http://dx.doi.org/10.1016/j.ijhydene.2006.06.05310.1016/j.ijhydene.2006.06.053Search in Google Scholar

[15] L.M. Petkovic, D.M. Ginosar, H.W. Rollins, K.C. Burch, P.J. Pinhero, H.H. Farell, Applied Catalysis A: General 338, 27 (2008) http://dx.doi.org/10.1016/j.apcata.2007.12.01610.1016/j.apcata.2007.12.016Search in Google Scholar

[16] T.H. Kim, G.T. Gong, B.G. Lee, K.Y. Lee, H.Y. Jeon, C.H. Shin, H. Kim, K.D. Jung, Applied Catalysis A: General 305, 39 (2006) http://dx.doi.org/10.1016/j.apcata.2006.02.05210.1016/j.apcata.2006.02.052Search in Google Scholar

[17] A.M. Banerjee, M.R. Pai, K. Bhattacharya, A.K. Tripathi, V.S. Kamble, S.R. Bharadwaj, S.K. Kulshreshtha, Int. J. Hydrogen Energy 33, 319 (2008) http://dx.doi.org/10.1016/j.ijhydene.2007.07.01710.1016/j.ijhydene.2007.07.017Search in Google Scholar

[18] B.M. Nagaraja, K.D. Jung, K.S. Yoo, Catal. Lett. 128, 248 (2009) http://dx.doi.org/10.1007/s10562-008-9747-310.1007/s10562-008-9747-3Search in Google Scholar

[19] D.M. Ginosar, H.W. Rollins, L.M. Petkovic, K.C. Burch, Int. J. Hydrogen Energy 34, 4065 (2009) http://dx.doi.org/10.1016/j.ijhydene.2008.09.06410.1016/j.ijhydene.2008.09.064Search in Google Scholar

[20] A. Tonejc, M. Stubičar, A.M. Tonejc, K. Kosanović, B. Subotić, I. Smit, J. Mater. Sci. Lett. 13, 519(1994) http://dx.doi.org/10.1007/BF0054018610.1007/BF00540186Search in Google Scholar

[21] Q. Yang, Bull. Mater. Sci. 34, 239 (2011) http://dx.doi.org/10.1007/s12034-011-0062-z10.1007/s12034-011-0062-zSearch in Google Scholar

Published Online: 2012-9-21
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow