Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 21, 2012

The radioactivity and the chemical nature of additives as factors determining the photocatalytic activity of TiO2

  • Maria Milanova EMAIL logo , Petya Kovacheva , Radina Kralchevska , Jovo Kolev , Joana Zaharieva and Dimitar Todorovsky
From the journal Open Chemistry

Abstract

Microcomposites consisting of TiO2 and ThF4 or UO3 (0.5–2% of the TiO2 mass) are produced by sol-gel synthesis of TiO2 in presence of the respective additives. X-ray diffraction study reveals small effect of the latter on TiO2 phase composition and cell parameters and significant influence on the crystallite size and UV/Vis reflectance spectra. The photocatalytic tests in presence of TiO2-ThF4 microcomposites under UV and solar irradiation show a non-monotonic increase of the Malachite Green degradation rate constant with the increase of ThF4-content. No changes in the photocatalytic activity are observed in the presence of UO3 but the latter composites exhibit activity in darkness. The results are compared with previously reported data on the performance of TiO2-ThO2 photocatalyst with the same radioactivity and suggest that both radioactivity and the chemical nature of the dopants are responsible for the photocatalytic performance of TiO2-based composites containing radioactive substances.

[1] Y. Miyasaka, PCT Int. Appl., WO 2005102454 A1, 2005.11.03. Database: CAPLUS (In Japan) Search in Google Scholar

[2] K. Shiraishi, Jpn. Kokai Tokkyo Koho, JP 2004197269 A 2004.07.15. Database CAPLUS (In Japa) Search in Google Scholar

[3] T. Abe, Jpn. Kokai Tokkyo Koho, JP 2000230153 A, 2000.08.22. Database CAPLUS (In Japan) Search in Google Scholar

[4] L.G. Devi, B.N. Murthy, S.G. Kumar, J. Mol. Catal. A-Chem. 308, 174 (2009) http://dx.doi.org/10.1016/j.molcata.2009.04.00710.1016/j.molcata.2009.04.007Search in Google Scholar

[5] L.G. Devi, B.N. Murthy, Centr. Eur. J. Chem. 7, 118 (2009) http://dx.doi.org/10.2478/s11532-008-0101-910.2478/s11532-008-0101-9Search in Google Scholar

[6] C.T. Yu, C.F. Wang, T.Y. Chen, Y.T. Chang, J. Radioanal. Nucl. Chem. 277, 337 (2008) http://dx.doi.org/10.1007/s10967-007-7099-x10.1007/s10967-007-7099-xSearch in Google Scholar

[7] R. Kralchevska, M. Milanova, P. Kovacheva, J. Kolev, G. Avdeev, D. Todorovsky, Centr. Eur. J. Chem. 9, 1027 (2011) http://dx.doi.org/10.2478/s11532-011-0089-410.2478/s11532-011-0089-4Search in Google Scholar

[8] Y. Chen, F. Chen, J. Zhang, Appl. Surface Sci. 255, 6290 (2009) http://dx.doi.org/10.1016/j.apsusc.2009.02.00410.1016/j.apsusc.2009.02.004Search in Google Scholar

[9] K. Lv, X. Li, K. Deng, J. Sun, X. Li, M. Li, Appl. Catalysis B: Environmental 95, 383 (2010) http://dx.doi.org/10.1016/j.apcatb.2010.01.01710.1016/j.apcatb.2010.01.017Search in Google Scholar

[10] C. Minero, G. Mariella, V. Maurino, E. Pelizzetti, Langmuir 16, 2632 (2000) http://dx.doi.org/10.1021/la990330110.1021/la9903301Search in Google Scholar

[11] L. Ye, Ch. Yang, L. Tian, L. Zan, T. Peng, Appl. Surface Sci. 257, 8072 (2011) http://dx.doi.org/10.1016/j.apsusc.2011.04.10110.1016/j.apsusc.2011.04.101Search in Google Scholar

[12] J. Birkenstock, R.X. Fischer, T. Messner, BRASS 1.0 beta: The Bremen Rietveld Analysis and Structure Suite. Zentrallabor für Kristallographie und Angewandte Materialwissenschaften, Fachbereich Geowissenschaften (University of Bremen, Bremen, 2003) Search in Google Scholar

[13] L. Dong, Y. Hu, F. Xu, D. Lu, B. Xu, Zh. Hu, Y. Chen, J. Phys. Chem. B 104, 78 (2000) http://dx.doi.org/10.1021/jp991442410.1021/jp9914424Search in Google Scholar

[14] D.W. Bahnemann, J. Monig, R. Chapman, J. Phys. Chem. 91, 3782 (1987) http://dx.doi.org/10.1021/j100298a01410.1021/j100298a014Search in Google Scholar

[15] M. Uzunova-Bujnova, R. Todorovska, D. Dimitrov, D. Todorovsky, Appl. Surf. Sci. 254, 7296 (2008) http://dx.doi.org/10.1016/j.apsusc.2008.05.33110.1016/j.apsusc.2008.05.331Search in Google Scholar

[16] H.M. Coleman, E.J. Routledge, J.P. Sumpter, B.R. Eggins, J.A. Byrne, Water Res. 38, 3233 (2004) http://dx.doi.org/10.1016/j.watres.2004.04.02110.1016/j.watres.2004.04.021Search in Google Scholar PubMed

[17] Y. Zhang, J.L. Zhou, B. Ning, Water Res. 41, 19 (2007) http://dx.doi.org/10.1016/j.watres.2006.09.02010.1016/j.watres.2006.09.020Search in Google Scholar PubMed

[18] R. Kralchevska, M. Milanova, T. Tišler, A. Pintar, G. Tyuliev, D. Todorovsky, Materials Chem. Physics 133, 1116 (2012) http://dx.doi.org/10.1016/j.matchemphys.2012.02.02510.1016/j.matchemphys.2012.02.025Search in Google Scholar

[19] Y. Chen, F. Chen, J. Zhang, Appl. Surf. Sci. 255, 6290 (2009) http://dx.doi.org/10.1016/j.apsusc.2009.02.00410.1016/j.apsusc.2009.02.004Search in Google Scholar

[20] P. Kovacheva, D. Todorovsky, D. Radev, V. Mavrodiev, R. Petrov, D. Kovacheva, K. Petrov, J. Radioanal. Nucl. Chem. 262, 573 (2004) http://dx.doi.org/10.1007/s10967-004-0478-710.1007/s10967-004-0478-7Search in Google Scholar

Published Online: 2012-9-21
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-012-0109-z/html
Scroll to top button