Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 21, 2012

Fabrication of superhydrophobic surface of stearic acid grafted zinc by using an aqueous plasma etching technique

  • Jinzhang Gao EMAIL logo , Yaping Li , Yan Li , Hongwei Liu and Wu Yang
From the journal Open Chemistry


A stable superhydrophobic surface of stearic acid grafted zinc was fabricated with two steps, that is, the zinc surface was firstly treated with glow discharge electrolysis plasma (GDEP) and then followed by a grafted reaction of stearic acid onto the treated zinc surface. Results indicated that the wettability of zinc substrate changed from superhydrophily to superhyphodrobicity with a water contact angle (CA) up to 158° and a water sliding angle (SA) less than 5°. The surface morphology and composition were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively.

[1] J.M. Xi, F. Lin, L. Jiang, Appl. Phys. Lett. 92, 053102 (2008) in Google Scholar

[2] Z.G. Guo, W.M. Liu, B.L. Su, Appl. Phys. Lett. 92, 063104 (2008) in Google Scholar

[3] M. Li, J. Zhai, H. Liu, Y.L. Song, L. Jiang, D.B. Zhu, J. Phys. Chem. B 107, 9954 (2003) in Google Scholar

[4] X. Hong, X.F. Gao, L. Jiang, J. Am. Chem. Soc. 129, 1478 (2007) in Google Scholar PubMed

[5] G.X. Li, B. Wang, Y. Liu, T. Tan, X.M. Song, H. Yan, Appl. Surf. Sci. 255, 3112 (2008) in Google Scholar

[6] C.S. Liu, Z.W. Li, L. Wang, Z. Xu, Key Eng. Mater. 368, 1374 (2008) in Google Scholar

[7] K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason, Nano Let. 3, 1701 (2003) in Google Scholar

[8] W. C. Wu, M. Chen, S. Liang, X.L. Wang, J.M. Chen, F. Zhou, J. Colloid Interface Sc. 326, 478 (2008) in Google Scholar PubMed

[9] E. Bormashenko, Colloids Surf. A 324, 47 (2008) in Google Scholar

[10] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, AdV. Mater. 14, 1857 (2002) in Google Scholar

[11] B.T. Qian, Z.Q. Shen, Langmuir 21, 9007 (2005) in Google Scholar PubMed

[12] M.L. Ma, Y. Mao, M. Gupta, K.K. Gleason, G.C. Rutledge, Macromolecules 38, 9742 (2005) in Google Scholar

[13] X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z.Q. Wang, L. Jiang, X.Y. Li, J. Am. Chem. Soc. 126, 3064 (2004) in Google Scholar PubMed

[14] F. Shi, X.X. Chen, L.Y. Wang, J. Niu, J.H. Yu, Z.Q. Wang, X. Zhang, Chem. Mater. 17, 6177 (2005) in Google Scholar

[15] B. Xu, Z.S. Cai, Appl. Surf. Sci. 254, 5899 (2008) in Google Scholar

[16] J.P. Youngblood, T.J. McCarthy, Macromolecules 32, 6800 (1999) in Google Scholar

[17] L. Zhai, F.Ç. Cebeci, R.E. Cohen, M.F. Rubner, Nano Lett. 4, 1349 (2004) in Google Scholar

[18] X.Y. Ling, I.Y. Phang, G.J. Vancso, J. Huskens, D.N. Reinhoudt, Langmuir 25, 3260 (2009) in Google Scholar PubMed

[19] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, Langmuir 15, 4321 (1999) in Google Scholar

[20] H. Yabu, M. Takebayashi, M. Tanaka, M. Shimomura, Langmuir 21, 3235 (2005) in Google Scholar PubMed

[21] J.Z. Gao, A.X. Wang, Y. Fu, J.L. Wu, D.P. Ma, X. Guo, Y. Li, W. Yang, Plasma Sci. Technol. 10, 30 (2008) in Google Scholar

[22] R. Joshi, R.D. Schulze, A.M. Plath, J.F. Friedrich, Plasma Proc. Polym. 5, 695 (2008) in Google Scholar

[23] M.B.O. Riekerink, J.G.A. Terlingen, G.H.M. Engbers, J. Feijen, Langmuir 15, 4847 (1999) in Google Scholar

[24] D.S. Wavhal, E.R. Fisher, Langmuir 19, 79 (2003) in Google Scholar

[25] A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944) in Google Scholar

Published Online: 2012-9-21
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 9.12.2023 from
Scroll to top button