Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 24, 2012

Adsorption of tert-butanol at the electrode from concentrated NaClO4 solutions

Jolanta Nieszporek
From the journal Open Chemistry


The parameters of the double layer for tert-butanol adsorption determined in the supporting electrolytes: 2 mol dm−3, 3 mol dm−3 and 4 mol dm−3 NaClO4, show an increase of tert-butanol adsorption on the mercury electrode together with the increase of NaClO4 concentration. The adsorption of tert-butanol on the electrode takes place via the −CH3 group which is shown by the changes in the values of zero charge potentials, E z. On the basis of the analysis of the changes of relative surface excess values, Γ′, and the parameters determining the maximum adsorption, the process of adsorption in the discussed systems can be recognized as a physical process. Besides, it can be said that a major drawback in the process of adsorption of the organic substance on the electrode is to remove water from the electrode surface.

[1] A.J. Bard, H.D. Abruna, Ch.E. Chidsey, L.R. Faulkner, S.W. Feldberg, K. Itaya, M. Majda, O. Melroy, R.W. Murray, J. Phys. Chem. 97, 7147 (1993) C. Fontanesi, L. Benedetti, Electrochim. Acta 42, 1373 (1997) in Google Scholar

[2] D. Jadreško, M. Lovrič, Electrochim. Acta 53, 8045 (2008) in Google Scholar

[3] F. Danilov, V. Obraztsov, A. Kapitonov, J. Electroanal. Chem. 552, 69 (2003) in Google Scholar

[4] A. Baars, K. Aoki, Y. Numata, J. Electroanal. Chem. 436, 133 (1997) in Google Scholar

[5] J. Saba, D. Gugała, J. Nieszporek, D. Sieńko, Z. Fekner, Electrochim. Acta 51, 6165 (2006) in Google Scholar

[6] J. Nieszporek, Monats. Chem. 141, 521 (2010) in Google Scholar

[7] C. Cachet, R. Wiart, Electrochim. Acta 44, 4743 (1999) in Google Scholar

[8] W.R. Fawcett, J. Electroanal. Chem. 310, 13 (1991) in Google Scholar

[9] J. Nieszporek, J. Electroanal. Chem. 662, 407 (2011) in Google Scholar

[10] L. Stolberg, S. Morin, J. Lipkowski, D.E. Irish, J. Electroanal. Chem. 307, 241 (1991) in Google Scholar

[11] G. Zilberman, J. Electroanal. Chem. 502, 100 (2001) in Google Scholar

[12] S. Romanowski, K. Maksymiuk, Z. Galus, J. Electroanal. Chem. 385, 95 (1995) in Google Scholar

[13] E. Lust, A. Jänes, K. Lust, P. Miidla, J. Electroanal. Chem. 413, 175 (1996) in Google Scholar

[14] M. Brzostowska-Smolska, P. Krysiński, Colloids and Surfaces A: Physicochem. Eng. Aspects 131, 39 (1998) in Google Scholar

[15] V.V. Emets, B.B. Damaskin, J. Electroanal. Chem. 582, 97 (2005) in Google Scholar

[16] M.R. Moncelli, M.L. Foresti, R. Guidelli, J. Electroanal. Chem. 295, 225 (1990) in Google Scholar

[17] M. Zelič, M. Lovrič, J. Electroanal. Chem. 541, 67 (2003) in Google Scholar

[18] D. Sieńko, D. Gugała-Fekner, J. Nieszporek, Z. Fekner, J. Saba, Collect. Czech. Chem. Commun. 74, 1309 (2009) in Google Scholar

[19] J. Koryta, J. Dvorak, V. Bohackova, Elektrochemia (PWN, Warszawa, 1980) (in Polish) Search in Google Scholar

[20] D.J. Schiffrin, J. Electroanal. Chem. 23, 168 (1969) in Google Scholar

[21] S. Trasatti, J. Electroanal. Chem. Interfacial. Electrochem. 28, 257 (1970) in Google Scholar

[22] J. Lawrence, R. Parsons, J. Phys. Chem. 73, 3577 (1969) in Google Scholar

[23] A. Nosal-Wiercińska, G. Dalmata, Electroanalysis 22, 2081 (2010) in Google Scholar

[24] A. Nosal-Wiercińska, M. Grochowski, Collect. Czech. Chem. Commun. 76, 265 (2011) in Google Scholar

[25] A. NOsal-Wiercińska, M. Grochowski, Collect. Czech. Chem. Commun. 76, 265 (2011) in Google Scholar

[26] A. Nosal-Wiercińska, Cent. Eur. J. Chem. 10, 1290 (2012) in Google Scholar

Published Online: 2012-10-24
Published in Print: 2013-1-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow