Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 29, 2012

Activated carbon from bamboo waste modified with iron and its application in the study of the adsorption of arsenite and arsenate

Juan Moreno-Piraján and Liliana Giraldo
From the journal Open Chemistry

Abstract

Activated carbon obtained from bamboo waste was synthesised and modified with iron (BAC-Fe) and used for the removal of arsenic from aqueous solutions. Two different adsorption models were used for analysing the data. The adsorption capacities were determined for BAC-arsenite, BAC-Fe-arsenite, BAC-arsenate and BAC-Fe-arsenate, with a qmax (µg g−1) of 14.89, 19.19, 22.32 and 27.32 respectively. Adsorption capacity varied as a function of pH and modifications to the sorbent. Adsorption isotherms from an aqueous solution of arsenite and arsenates on activated carbons were determined. These adsorption isotherms were consistent with the Langmuir and Freundlich adsorption models. Adsorption kinetics followed a pseudo-first order rate equation, as did the kinetics for BAC-Fe-arsenite and BAC-Fe-arsenate adsorption.

[1] L.H. Keith, W.A. Telliard, Environ. Sci. Technol. 13, 416 (1979) http://dx.doi.org/10.1021/es60152a60110.1021/es60152a601Search in Google Scholar

[2] J.C. Igwe, E.C. Nwokennaya, A.A. Abia, Afr. J. Biotechnol. 4, 1109 (2005) Search in Google Scholar

[3] B.F. Reed, S. Arunnachalam, B. Thomas, Environ. Prog. 13, 60 (1994) 10.1002/ep.670130123Search in Google Scholar

[4] B.G. Neal, E.B. Lawrence, J.L. Wendt, Combust. Sci. Technol. 74, 211 (1990) http://dx.doi.org/10.1080/0010220900895168910.1080/00102209008951689Search in Google Scholar

[5] K.K.H. Choy, M. Gordon, Chemosphere 60, 1141 (2005) http://dx.doi.org/10.1016/j.chemosphere.2004.12.04110.1016/j.chemosphere.2004.12.041Search in Google Scholar

[6] A. Netzer, D.E. Hughes, Water Resour. 18, 927 (1984) 10.1016/0043-1354(84)90241-0Search in Google Scholar

[7] G. McKay, M.F. Porter, J. Chem. Technol. Biotechnol. 69, 309 (1997) http://dx.doi.org/10.1002/(SICI)1097-4660(199707)69:3<309::AID-JCTB724>3.0.CO;2-W10.1002/(SICI)1097-4660(199707)69:3<309::AID-JCTB724>3.0.CO;2-WSearch in Google Scholar

[8] C. Gabaldon, P. Marzal, J. Ferrer, A. Seco, Water Resour. 30, 3050 (1996) 10.1016/S0043-1354(96)00165-0Search in Google Scholar

[9] C. Namasivayam, K. Kadirveliu, Chemosphere 34, 377 (1997) http://dx.doi.org/10.1016/S0045-6535(96)00384-010.1016/S0045-6535(96)00384-0Search in Google Scholar

[10] M.J. Brown, J.N. Lester, Water Resour. 16, 1539 (1982) 10.1016/0043-1354(82)90206-8Search in Google Scholar

[11] K. Periasamy, C. Namasiavayam, Ind. Eng. Chem. Res. 33, 317 (1994) http://dx.doi.org/10.1021/ie00026a02210.1021/ie00026a022Search in Google Scholar

[12] S. Gao, W.J. Walker, R.A. Dahlgre, J. Bold, Water Air Soil Pollut. 93, 331 (1997) 10.1023/A:1022169531878Search in Google Scholar

[13] W.R. Knocke, L.H. Hemphill, Water Resour. 15, 275 (1981) 10.1016/0043-1354(81)90121-4Search in Google Scholar

[14] A.G. Rowley, A.B. Gunningham, F.M. Husband, Environ. Contamin. Toxicol. 18, 340 (1984) 10.1021/es00129a604Search in Google Scholar

[15] K.K. Panday, G. Prasad, V.N. Singh, Water Resour. 19, 869 (1985) 10.1016/0043-1354(85)90145-9Search in Google Scholar

[16] K. Wang, B. Xing, Chemosphere 48, 665 (2002) http://dx.doi.org/10.1016/S0045-6535(02)00167-410.1016/S0045-6535(02)00167-4Search in Google Scholar

[17] M. Arias, M.T. Barral, J.C. Mejuto, Chemosphere 48, 1081 (2002) http://dx.doi.org/10.1016/S0045-6535(02)00169-810.1016/S0045-6535(02)00169-8Search in Google Scholar

[18] E. Alvarez-Ayuso, A. García-Sanchez, Clay Miner 51, 475 (2003) http://dx.doi.org/10.1346/CCMN.2003.051050110.1346/CCMN.2003.0510501Search in Google Scholar

[19] D.C.K. Ko, C.W. Cheung, K.K.H. Choy, J.F. Porter, G. McKay, Chemosphere 54, 273 (2004) http://dx.doi.org/10.1016/j.chemosphere.2003.08.00410.1016/j.chemosphere.2003.08.004Search in Google Scholar

[20] Y.S. Ho, C.T. Huang, H.W. Huang, Process Biochem. 37, 1421 (2002) http://dx.doi.org/10.1016/S0032-9592(02)00036-510.1016/S0032-9592(02)00036-5Search in Google Scholar

[21] T. Viraraghavan, M.M. Dronamraju, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 28, 1261 (1993) http://dx.doi.org/10.1080/1093452930937594110.1080/10934529309375941Search in Google Scholar

[22] G. McKay, M.J. Bino, J. Chem. Technol. Biotechnol. 37, 81 (1987) http://dx.doi.org/10.1002/jctb.28037020310.1002/jctb.280370203Search in Google Scholar

[23] S. Karabulut, A. Karabakan, A. Denizli, Purif. Technol. 18, 177 (2000) http://dx.doi.org/10.1016/S1383-5866(99)00067-210.1016/S1383-5866(99)00067-2Search in Google Scholar

[24] Z. Le, Water Qual. Res. J. Canada 39, 267 (75) Search in Google Scholar

[25] J.C. Groen, L.A.A. Peffer, J. Perez-Ramirez, Micr. Mesop.Mat. 60, 1 (2003) http://dx.doi.org/10.1016/S1387-1811(03)00339-110.1016/S1387-1811(03)00339-1Search in Google Scholar

[26] K.B. Payn, T.M. Abdel-Fattah, J. Environ. Sci. Health. 40:723 (2005) 10.1081/ESE-200048254Search in Google Scholar PubMed

[27] W. Shao, X. Li, Q. Cao, F. Luo, J. Li, Y. Du, Hydrometallurgy 91, 138 (2008). http://dx.doi.org/10.1016/j.hydromet.2008.01.00510.1016/j.hydromet.2008.01.005Search in Google Scholar

[28] K.P Raven, A. Jain, R.H. Loeppert, Environ. Sci. Technol. 32, 344 (1998) http://dx.doi.org/10.1021/es970421p10.1021/es970421pSearch in Google Scholar

Published Online: 2012-11-29
Published in Print: 2013-2-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow