Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 29, 2012

In vitro surface biocompatibility of high-content silicon-substituted calcium phosphate ceramics

Nasser Mostafa EMAIL logo , Abdallah Shaltout , Lachezar Radev and Hassan Hassan
From the journal Open Chemistry


The present work investigates surface biocompatibility of silicon-substituted calcium phosphate ceramics. Different silicon-substituted calcium phosphate ceramic bodies were prepared from co-precipitated powders by sintering at 1300°C. The in vitro bioactivity of the ceramics was assessed in simulated body fluid (SBF) at 37°C for periods up to 4 weeks. The changes in the surface morphology and composition were determined by scanning electron microscopy (SEM) coupled with electron probe microanalysis and energy dispersive spectrometer (EDX). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to observe the change in ionic concentration of SBF after removal of the samples. The bioactivity of the ceramics increased with an increasing silicate ion substitution in a systematic way. The surface of ceramics with 2.23% silicon substitution was partially covered with apatite layer after one week, while ceramics with 8.1% silicon substitution were completely covered with apatite in the first week. The porous microstructure of high-concentration Si-substituted ceramics helps the dissolution of surface ions and the leaching process. This allows SBF to reach supersaturation in a short time and accelerate the deposition of apatite layer.

[1] L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998) in Google Scholar

[2] W. Suchanek, M. Yoshimura, J. Mat. Res. 13, 94 (1998) in Google Scholar

[3] L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991) in Google Scholar

[4] C.P. Klein, A.A. Driessen, K. de Groot, A. van den Hoof, J. Biomed. Mater. Res. 17, 769 (1983) in Google Scholar

[5] J.S. Cho, Y.C. Kang, J. Alloy Compd. 464, 282 (2008) in Google Scholar

[6] E.C. Victorria, F.D. Gnanam, Artif. Organs. 16, 12 (2002) Search in Google Scholar

[7] N. Ikeda, K. Kawanabe, T. Nanamura, Biomaterials 20, 1087 (1999) in Google Scholar

[8] L.L. Hench, E.C Ethridge, Biomaterials, An Interfacial Approach (Academic Press, New York, 1982) Search in Google Scholar

[9] M. Mazaheri, M. Haghighatzadeh, A.M. Zahedi, S.K. Sadrnezhaad, J. Alloy Compd. 471, 180 (2009) in Google Scholar

[10] C. Deng, J. Weng, Q.Y. Cheng, S.B. Zhou, X. Lu, S.X. Qu, X.H. Li, Curr. Appl. Phys. 7, 679 (2007) in Google Scholar

[11] C. Schwatz, B. Jacquemaire, P. Lecestre, P. Frayssinet, J. Mater. Sci., Mater. Med. 10, 821 (1999) in Google Scholar

[12] S.H. Kwon, Y.K. Jun, S.H. Hong, I.S. Lee, H.E. Kim, Y.Y. Won, J. Am. Ceram. Soc. 85, 3129 (2002) in Google Scholar

[13] A.M. Pietak, M. Sayer, Biomaterials 27, 3 (2006) in Google Scholar PubMed

[14] E.M. Carlisle, Science 167, 279 (1970) in Google Scholar PubMed

[15] A.K. Lynn, T. Nakamura, N. Patel, A.E. Porter, A.C. Renouf, P.R. Laity, S.M. Best, R.E. Cameron, Y. Shimizu, W. Bonfield, J. Biomed. Mater. Res. 74, 447 (2005) in Google Scholar PubMed

[16] S.V. Dorozhkin, J. Am. Ceram. Soc. 90, 244 (2007) in Google Scholar

[17] I.R. Gibson, K.A. Hing, J.D. Revell, J.D. Santos, S.M. Best, W. Bonfield, Key Eng. Mater. 203, 218 (2002) 10.4028/ in Google Scholar

[18] I.R. Gibson, S.M. Best, W. Bonfield, J. Biomed. Mater. Res. 44, 422 (1999)<422::AID-JBM8>3.0.CO;2-#Search in Google Scholar

[19] P.A.P. Marques, M.C.F. Magalhaes, R.N. Correia, M. Vallet-Regi, Key Eng. Mater. 47, 192 (2001) 10.4028/ in Google Scholar

[20] A.J. Ruys, J. Aust. Ceram. Soc. 29, 71 (1993) 10.1021/cen-v071n020.p029Search in Google Scholar

[21] S.R. Kim, D.H. Riu, Y.J. Lee, Y.H. Kim, Key Eng. Mater. 85, 218 (2002) 10.4028/ in Google Scholar

[22] T.X. Lian, X.X. Feng, L.R. Fang, Mater. Lett. 59, 3841 (2005) in Google Scholar

[23] N.Y. Mostafa, H.M. Hassan, Omar H. Abd Elkader, J. Am. Ceram. Soc. 94(5), 1584 (2011) in Google Scholar

[24] N.Y. Mostafa, H.M. Hassan, F.H. Mohamed, J. Alloy Compd. 479(1–2), 692 (2009) in Google Scholar

[25] B. Chang, C. Lee, K. Hong, H. Youn, H. Ryu, S. Chung, K. Park, Biomaterials 21, 1291 (2000) in Google Scholar

[26] L. Radev, et al., Cent. Eur. J. Chem. 7(3), 317 (2009) in Google Scholar

[27] L. Radev, et al., Processing and Application of Ceramics 4(1), 15 (2010) 10.2298/PAC1001015RSearch in Google Scholar

[28] L. Radev, et al., Cent. Eur. J. Chem. 7(3), 322 (2009) in Google Scholar

[29] T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006) in Google Scholar PubMed

[30] H. Takadama, M. Hashimoto, M. Mizuno, T. Kokubo, Phos. Res. Bull. 17, 119 (2004) 10.3363/prb1992.17.0_119Search in Google Scholar

[31] L. Radev, V. Hristov, M.H. Fernandes, I.M. Salvado, Cent. Eur. J. Chem. 8, 278 (2010) in Google Scholar

[32] M.U Hashmi, S.A. Shah, S. Alam, A. Shamim, Ceramics — Silikáty 54(1), 8 (2010) Search in Google Scholar

[33] L. Radev, N.Y. Mostafa, I. Michailova, I.M. Salvado, M.H. Fernandes, International Journal of Materials and Chemistry 2, 1 (2012) 10.5923/j.ijmc.20120201.01Search in Google Scholar

[34] P.N. Gunawidjaja, A.Y. Lo, I. Izquierdo-Barba, A. Garcıa, D. Arcos, B. Stevensson, J. Grins, M. Vallet-Regi, M. Eden, J. Phys. Chem. C 114, 19345 (2010) in Google Scholar

[35] E. Verne, O. Bretcanu, C. Balagna, C.L. Bianchi, M. Cannas, S. Gatti, C. Vitale-Brovarone, J. Mater. Sci.: Mater. Med. 20, 75 (2009) in Google Scholar PubMed

[36] M.S. Abdel-Aal, A.A. Shaltout, N.Y. Mostafa, Spectroscopy letter 44, 186 (2011) in Google Scholar

Published Online: 2012-11-29
Published in Print: 2013-2-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.12.2022 from
Scroll Up Arrow