Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 23, 2013

Applicability of Gd-doped BaZrO3, SrZrO3, BaCeO3 and SrCeO3 proton conducting perovskites as electrolytes for solid oxide fuel cells

Wojciech Zając, Dariusz Rusinek, Kun Zheng and Janina Molenda
From the journal Open Chemistry


Four proton conducting oxides of perovskite structure: BaZrO3, SrZrO3, BaCeO3 and SrCeO3 doped with 5 mol.% of gadolinium are compared in terms of crystal structure, microstructure, sinterability, water sorption ability, ionic transference number, electrical conductivity and stability towards CO2. Relations between proton conductivity, structural and chemical parameters: pseudo-cubic unit cell volume, lattice free volume, tolerance factor, crystal symmetry and electronegativity are discussed. The grain boundary resistance is shown to be the limiting factor of total proton-conductivity for the materials examined. The highest proton conductivity was observed for BaCeO3, however, it turned out to be prone to degradation in CO2-containing atmosphere and reduction at high temperatures. On the other hand, Ba and Sr zirconates are found to be more chemically stable, but exhibit low electrical conductivity. Electrical conductivity relaxation upon hydration is used to calculate proton diffusion coefficient. Selected materials were tested as electrolytes in solid oxide fuel cells.

[1] S. Srinivasan, Fuel Cells. From Fundamentals to Applications (Springer Science+Business Media, LLC, New York, USA, 2006) Search in Google Scholar

[2] N.Q. Minh, Solid State Ionics 174, 271 (2004) in Google Scholar

[3] S.M. Haile, Acta Mater. 51, 5981 (2003) in Google Scholar

[4] J. Molenda, K. Świerczek, W. Zając, J. Power Sources 173, 657 (2007) in Google Scholar

[5] N. Ito, M. Iijima, K. Kimura, S. Iguchi, J. Power Sources 152, 200 (2005) in Google Scholar

[6] S. Song, E.D. Wachsman, S.E. Dorris, U. Balachandran, In: E.D. Wachsman, K.S. Lyons, M. Carolyn, F. Garzon, M. Liu (Eds.), Solid State Ionic Devices III (The Electrochemical Society Inc., Pennington, NJ, USA, 2003) 456 Search in Google Scholar

[7] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics 3–4, 359 (1981) in Google Scholar

[8] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc. 135, 529 (1988) in Google Scholar

[9] H. Iwahara, Solid State Ionics 77, 289 (1995) in Google Scholar

[10] H. Iwahara, Solid State Ionics 86-88, 9 (1996) in Google Scholar

[11] H. Iwahara, T. Shimura, H. Matsumoto, Electrochemistry 68, 154 (2000) 10.5796/electrochemistry.68.154Search in Google Scholar

[12] K.D. Kreuer, E. Schönherr, J. Maier, Solid State Ionics 70-71, 278 (1994) in Google Scholar

[13] A.S. Nowick, Y. Du, Solid State Ionics 77, 137 (1995) in Google Scholar

[14] K.D. Kreuer, Solid State Ionics 97, 1 (1997) in Google Scholar

[15] S. Wienströer, H.-D. Wiemhöfer, Solid State Ionics 101–103, 1113 (1997) in Google Scholar

[16] K.D. Kreuer, Solid State Ionics 125, 285 (1999) in Google Scholar

[17] T. Norby, Solid State Ionics 125, 1 (1999) in Google Scholar

[18] K.D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003) in Google Scholar

[19] T. Norby, M. Widerøe, R. Glöckner, Y. Larring, Dalton Trans. 3012 (2004) 10.1039/B403011GSearch in Google Scholar

[20] L. Malavasi, C.A.J. Fisher, M.S. Islam, Chem. Soc. Rev. 39, 4370 (2010) in Google Scholar

[21] Y. Yamazaki, C.-K. Yang, S.M. Haile, Scripta Mater. 65, 102 (2011) in Google Scholar

[22] W. Münch, G. Seifert, K.D. Kreuer, J. Maier Solid State Ionics 86-88, 647 (1996) in Google Scholar

[23] Y. Larring, T. Norby, Solid State Ionics 77, 147 (1995) in Google Scholar

[24] K.H. Ryu, S.M. Haile, Solid State Ionics 125, 355 (1999) in Google Scholar

[25] N. Taniguchi, K. Natoh, J. Niikura, T. Gamo, Solid State Ionics 53-56, 998 (1992) in Google Scholar

[26] S.J. Stokes, M.S. Islam, J. Mater. Chem., 20, 6258 (2010) in Google Scholar

[27] F. Giannici, A. Longo, A. Balerna, A. Martorana, Chem. Mater. 21, 597 (2009) in Google Scholar

[28] A.C. Larson, R.B. Von Dreele, Los Alamos National Laboratory Report LAUR 86-748 (2004) Search in Google Scholar

[29] B.H. Toby, J. Appl. Cryst. 34, 210 (2001) in Google Scholar

[30] M. Mogensen, D. Lybye, N. Bonanos, P.V. Hendriksen, F.W. Poulsen, Solid State Ionics 174, 279 (2004) in Google Scholar

[31] W. Zając, J. Molenda, Solid State Ionics 192, 163 (2011) in Google Scholar

[32] S.M. Haile, D.L. West, J. Campbell, J. Mater. Res. 13, 1576 (1998) in Google Scholar

[33] E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy. Theory, Experiment, and Applications, 2nd edition (John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2005) in Google Scholar

[34] A.S. Nowick, A.V. Vaysleyb, Solid State Ionics 97, 17 (1997) in Google Scholar

[35] J. Wu, L.P. Li, W.T.P. Espinosa, S.M. Haile, J. Mater. Res. 19, 2366 (2004) in Google Scholar

[36] A. Braun, S. Duval, P. Ried, J. Embs, F. Juranyi, T. Strässle, U. Stimming, R. Hempelmann, P. Holtappels, T. Graule, J. Appl. Electrochem. 39, 471 (2009) in Google Scholar

[37] T. Schober, J. Friedrich, J.B. Condon, Solid State Ionics 77, 175 (1995) in Google Scholar

[38] V.P. Gorelov, V.B. Balakireva, Yu.N. Kleshchev, V.P. Brusentsov, Inrog. Mater. 37, 535 (2001) in Google Scholar

[39] H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, Solid State Ionics 61, 65 (1993) in Google Scholar

[40] K. Katahira, Y. Kohcchi, T. Shimura, H. Iwahara, Solid State Ionics 138, 91 (2000) in Google Scholar

[41] C. Chen, G. Ma, J. Alloy. Compd. 485, 69 (2009) in Google Scholar

[42] D.A. Stevenson, N. Jiang, R.M. Buchanan, F.E.G. Henn, Solid State Ionics 62, 279 (1993) in Google Scholar

[43] S. Okada, A. Mineshige, M. Kobune, T. Yazawa, J. Ceram. Soc. Jap. 112, S700 (2004) Search in Google Scholar

[44] X. Qi, Y.S. Lin, Solid State Ionics 130, 149 (2000) in Google Scholar

[45] T. Shimura, H. Tanaka, H. Matsumoto, T. Yogo, Solid State Ionics 176, 2945 (2005) in Google Scholar

[46] J. Dauter, N. Maffei, S.S. Bhella, V. Thangadurai, J. Electrochem. Soc. 157, B1413 (2010) in Google Scholar

[47] F. Zhao, Q. Liu, S. Wang, K. Brinkman, F. Chen, Int. J. Hydrogen Energ. 35, 4258 (2010) in Google Scholar

[48] C. Zhang, H. Zhao, Solid State Ionics 206, 17 (2012) in Google Scholar

[49] S. Tao, J.T.S. Irvine, Adv. Mater. 18, 1581 (2006) in Google Scholar

[50] E. Fabbri, I. Markus, L. Bi, D. Pergolesi, E. Traversa, Solid State Ionics 202, 30 (2011) in Google Scholar

[51] L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, M. Liu, Science 326, 126 (2009) in Google Scholar PubMed

[52] W. Münich, K.D. Kreuer, S. Adams, G. Seifert, J. Maier, Phase Transit. 68, 567 (1999) in Google Scholar

[53] J.-H. Yu, J.-S. Lee, J. Maier, Solid State Ionics 181, 154 (2010) in Google Scholar

[54] J.-H. Yu, J.-S. Lee, J. Maier, Angew. Chem. Int. Ed. 46, 8992 (2007) in Google Scholar PubMed

[55] H.-I. Yoo, J.-K. Kim, C.-E. Lee, J. Electrochem. Soc. 156, B66 (2009) in Google Scholar

[56] H.-I. Yoo, J.I. Yeon, J.-K. Kim, Solid State Ionics 180, 1443 (2009) in Google Scholar

[57] H.-I. Yoo, J.-Y. Yoon, J.-S. Ha, C.-E. Lee, Phys. Chem. Chem. Phys. 10, 974 (2008) in Google Scholar PubMed

[58] D.-K. Lim, M.-B. Choi, K.-T. Lee, H.-S. Yoon, E. D. Wachsman, S.-J. Song, J. Electrochem. Soc., 158, B852 (2011) in Google Scholar

[59] J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, UK, 1975) Search in Google Scholar

Published Online: 2013-1-23
Published in Print: 2013-4-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow