Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 29, 2012

Microstructures and growth characteristics of polyelectrolytes on silicon using layer-by-layer assembly

  • Adina Bragaru EMAIL logo , Mihaela Kusko , Antonio Radoi , Mihai Danila , Monica Simion , Florea Craciunoiu , Razvan Pascu , Iuliana Mihalache and Teodora Ignat
From the journal Open Chemistry

Abstract

Growth processes of nanocomposite layers obtained by polyelectrolytes, poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC), self-assembled on silicon surface using layer-by-layer (LbL) technique were investigated, and theoretical and experimental data are herein reported. Complementary microstructural and compositional analyses techniques (scanning electron microscopy, ellipsometry, X-ray reflectivity, zeta (ξ) potential measurements and attenuated total reflection infrared spectroscopy) were used for deep characterization of the multilayer structure formation. Electrophoretic zeta (ξ) potential measurements indicated that the surface charge was either positive or negative, depending on the polyelectrolyte used (PDADMAC or PSS). ATR-IR spectra confirmed the successfully silanization process and then, the building up of the nanocomposite layer. Morphological investigation and X-ray reflectivity demonstrated the growth process and cross-section size of the bilayers. Ellipsometric measurements were in very good agreement with SEM and XRR, showing once again the successful deposition of polyelectrolyte multilayers.

[1] G. Decher, Science 277, 1232 (1997) http://dx.doi.org/10.1126/science.277.5330.123210.1126/science.277.5330.1232Search in Google Scholar

[2] J.M. Qian, A.L. Suo, Y. Yao, Z.H. Jin, Clin. Biochem. 37, 155 (2004) http://dx.doi.org/10.1016/j.clinbiochem.2003.10.01310.1016/j.clinbiochem.2003.10.013Search in Google Scholar

[3] F.N. Crespilho, V. Zucolotto, O.N. Oliveira Jr., F. Nart, Int. J. Electrochem. Sci. 1, 194 (2006) Search in Google Scholar

[4] V.T. Dimakis, V.G. Gavala, N.A. Chaniotakis, Anal. Chim. Acta 467, 217 (2002) http://dx.doi.org/10.1016/S0003-2670(02)00377-X10.1016/S0003-2670(02)00377-XSearch in Google Scholar

[5] R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265 (1985) http://dx.doi.org/10.1016/0304-4173(85)90014-X10.1016/0304-4173(85)90014-XSearch in Google Scholar

[6] F. Caruso, D. Trau, H. Mohwald, R. Renneberg, Langmuir 16, 1485 (2000) http://dx.doi.org/10.1021/la991161n10.1021/la991161nSearch in Google Scholar

[7] H. Chen, S. Dong, Talanta 71, 1752 (2007) http://dx.doi.org/10.1016/j.talanta.2006.08.01410.1016/j.talanta.2006.08.014Search in Google Scholar PubMed

[8] T. Nakashima, J. Zhu, M. Qin, S. Ho, N.A. Kotov, Nanoscale 2, 2084 (2010) http://dx.doi.org/10.1039/b9nr00333a10.1039/b9nr00333aSearch in Google Scholar PubMed

[9] H. Qin, J. Liu, C. Chen, J.H. Wang, E. Wang, Anal. Chim. Acta 712, 127 (2012) http://dx.doi.org/10.1016/j.aca.2011.10.04410.1016/j.aca.2011.10.044Search in Google Scholar PubMed

[10] A.V. Dobrynina, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005) http://dx.doi.org/10.1016/j.progpolymsci.2005.07.00610.1016/j.progpolymsci.2005.07.006Search in Google Scholar

[11] M. Kawaguchi, K. Hayashi, A. Takahashi, Macromolecules 17, 2066 (1984) http://dx.doi.org/10.1021/ma00140a03310.1021/ma00140a033Search in Google Scholar

[12] S.S. Shiratori, M.F. Rubner, Macromolecules 33, 4213 (2000) http://dx.doi.org/10.1021/ma991645q10.1021/ma991645qSearch in Google Scholar

[13] J. Schmitt, T. Gruenewald, G. Decher, P.S. Pershan, K. Kjaer, M. Loesche, Macromolecules 2, 7058 (1993) http://dx.doi.org/10.1021/ma00077a05210.1021/ma00077a052Search in Google Scholar

[14] M. Yu, I. Gorshkova, F. Volkova, S. G. Alekseeva, Polym. Sci.Ser 53, 57 (2011) 10.1134/S0965545X11010019Search in Google Scholar

[15] A.V. Delgado, F. Gonzalez-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, J. Colloid Interf. Sci. 309, 194 (2007) http://dx.doi.org/10.1016/j.jcis.2006.12.07510.1016/j.jcis.2006.12.075Search in Google Scholar

[16] J. Jiang, G. Oberdorster, P. Biswas, J. Nanopart. Res. 11, 77 (2009) http://dx.doi.org/10.1007/s11051-008-9446-410.1007/s11051-008-9446-4Search in Google Scholar

[17] M. Kosmulski, Surface Charging and Points of Zero Charge (CRC Press, Florida, USA: Boca Raton, 2009) http://dx.doi.org/10.1201/978142005189610.1201/9781420051896Search in Google Scholar

[18] J. Kim, P. Seidler, L.S. Wan, C.J. Fill, J. Colloid Interf. Sci. 329, 114 (2009) http://dx.doi.org/10.1016/j.jcis.2008.09.03110.1016/j.jcis.2008.09.031Search in Google Scholar

[19] O. Filies, O. Böling, K. Grewer, J. Lekki, M. Lekka, Z. Stachura, B. Cleff, Appl. Surf. Sci. 141, 357 (1999) http://dx.doi.org/10.1016/S0169-4332(98)00524-810.1016/S0169-4332(98)00524-8Search in Google Scholar

[20] M Yasaka, The Rigaku Journal 26, 1 (2010) Search in Google Scholar

[21] M. Kolasinska, M. Zebala, M. Krasowka, P. Warszynski, J. Colloid Interf. Sci. 326, 301 (2008) http://dx.doi.org/10.1016/j.jcis.2008.06.05310.1016/j.jcis.2008.06.053Search in Google Scholar PubMed

[22] M. Rusu, D. Kuckling, H. Mohwald, M. Schonhoff, J. Colloid Interf. Sci. 298, 124 (2006) http://dx.doi.org/10.1016/j.jcis.2005.12.02710.1016/j.jcis.2005.12.027Search in Google Scholar PubMed

[23] C.H. Chiang, H. Ishida, J.L. Koenig, J. Colloid Interf. Sci. 74, 396 (1980) http://dx.doi.org/10.1016/0021-9797(80)90209-X10.1016/0021-9797(80)90209-XSearch in Google Scholar

[24] R. Pena-Alonso, F. Rubio, J. Rubio, J. Oteo, J. Mater. Sci. 42, 595 (2007) http://dx.doi.org/10.1007/s10853-006-1138-910.1007/s10853-006-1138-9Search in Google Scholar

[25] E.T. Vandenberg, L. Bertilsson, B. Liedberg, K. Uvdal, R. Erlandsson, H. Elwing, I. Lundström, J. Colloid Interface Sci. 147, 103 (1991) http://dx.doi.org/10.1016/0021-9797(91)90139-Y10.1016/0021-9797(91)90139-YSearch in Google Scholar

[26] J. Lu, J. Zhang, C. Xiao, J. Appl. Polym. Sci.106, 1972 (2007) http://dx.doi.org/10.1002/app.2673210.1002/app.26732Search in Google Scholar

[27] M.C. Silva et al., Braz. J. Phys. 36, 499 (2006) http://dx.doi.org/10.1590/S0103-9733200600030007110.1590/S0103-97332006000300071Search in Google Scholar

[28] L. Ge, C. Pan, H. Chen, X. Wang, C. Wang, Z. Gu, Colloid Surface A 293, 272 (2007) http://dx.doi.org/10.1016/j.colsurfa.2006.07.05510.1016/j.colsurfa.2006.07.055Search in Google Scholar

[29] J. Coats, In: R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry (John Wiley & Ltd., Chiechester, 2000) 10815–10837 Search in Google Scholar

[30] D.K. Kim et al. Thin Solid Films 350, 153 (1999) http://dx.doi.org/10.1016/S0040-6090(99)00351-X10.1016/S0040-6090(99)00351-XSearch in Google Scholar

[31] A.G. Richter, C.J. Yu, A. Datta, J. Kmetko, P. Dutta, Colloids and Surfaces A 3, 198 (2002) 10.1016/S0927-7757(01)00908-6Search in Google Scholar

[32] L.G. Parrat, Phys. Rev. 95, 359 (1954) http://dx.doi.org/10.1103/PhysRev.95.35910.1103/PhysRev.95.359Search in Google Scholar

[33] G. Decher, J. Schmitt, Prog. Colloid. Polym. Sci. 89, 160 (1992) http://dx.doi.org/10.1007/BFb011630210.1007/BFb0116302Search in Google Scholar

[34] H.G. Tompkins, E.A. Irene (Eds.), Handbook of Ellipsometry (William Andrews Publications, Springer, Norwich, NY, 2005) 10.1007/3-540-27488-XSearch in Google Scholar

Published Online: 2012-11-29
Published in Print: 2013-2-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 9.2.2023 from https://www.degruyter.com/document/doi/10.2478/s11532-012-0152-9/html
Scroll Up Arrow