Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 29, 2012

Microstructures and growth characteristics of polyelectrolytes on silicon using layer-by-layer assembly

  • Adina Bragaru EMAIL logo , Mihaela Kusko , Antonio Radoi , Mihai Danila , Monica Simion , Florea Craciunoiu , Razvan Pascu , Iuliana Mihalache and Teodora Ignat
From the journal Open Chemistry


Growth processes of nanocomposite layers obtained by polyelectrolytes, poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC), self-assembled on silicon surface using layer-by-layer (LbL) technique were investigated, and theoretical and experimental data are herein reported. Complementary microstructural and compositional analyses techniques (scanning electron microscopy, ellipsometry, X-ray reflectivity, zeta (ξ) potential measurements and attenuated total reflection infrared spectroscopy) were used for deep characterization of the multilayer structure formation. Electrophoretic zeta (ξ) potential measurements indicated that the surface charge was either positive or negative, depending on the polyelectrolyte used (PDADMAC or PSS). ATR-IR spectra confirmed the successfully silanization process and then, the building up of the nanocomposite layer. Morphological investigation and X-ray reflectivity demonstrated the growth process and cross-section size of the bilayers. Ellipsometric measurements were in very good agreement with SEM and XRR, showing once again the successful deposition of polyelectrolyte multilayers.

[1] G. Decher, Science 277, 1232 (1997) in Google Scholar

[2] J.M. Qian, A.L. Suo, Y. Yao, Z.H. Jin, Clin. Biochem. 37, 155 (2004) in Google Scholar

[3] F.N. Crespilho, V. Zucolotto, O.N. Oliveira Jr., F. Nart, Int. J. Electrochem. Sci. 1, 194 (2006) Search in Google Scholar

[4] V.T. Dimakis, V.G. Gavala, N.A. Chaniotakis, Anal. Chim. Acta 467, 217 (2002) in Google Scholar

[5] R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265 (1985) in Google Scholar

[6] F. Caruso, D. Trau, H. Mohwald, R. Renneberg, Langmuir 16, 1485 (2000) in Google Scholar

[7] H. Chen, S. Dong, Talanta 71, 1752 (2007) in Google Scholar PubMed

[8] T. Nakashima, J. Zhu, M. Qin, S. Ho, N.A. Kotov, Nanoscale 2, 2084 (2010) in Google Scholar PubMed

[9] H. Qin, J. Liu, C. Chen, J.H. Wang, E. Wang, Anal. Chim. Acta 712, 127 (2012) in Google Scholar PubMed

[10] A.V. Dobrynina, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005) in Google Scholar

[11] M. Kawaguchi, K. Hayashi, A. Takahashi, Macromolecules 17, 2066 (1984) in Google Scholar

[12] S.S. Shiratori, M.F. Rubner, Macromolecules 33, 4213 (2000) in Google Scholar

[13] J. Schmitt, T. Gruenewald, G. Decher, P.S. Pershan, K. Kjaer, M. Loesche, Macromolecules 2, 7058 (1993) in Google Scholar

[14] M. Yu, I. Gorshkova, F. Volkova, S. G. Alekseeva, Polym. Sci.Ser 53, 57 (2011) 10.1134/S0965545X11010019Search in Google Scholar

[15] A.V. Delgado, F. Gonzalez-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, J. Colloid Interf. Sci. 309, 194 (2007) in Google Scholar

[16] J. Jiang, G. Oberdorster, P. Biswas, J. Nanopart. Res. 11, 77 (2009) in Google Scholar

[17] M. Kosmulski, Surface Charging and Points of Zero Charge (CRC Press, Florida, USA: Boca Raton, 2009) in Google Scholar

[18] J. Kim, P. Seidler, L.S. Wan, C.J. Fill, J. Colloid Interf. Sci. 329, 114 (2009) in Google Scholar

[19] O. Filies, O. Böling, K. Grewer, J. Lekki, M. Lekka, Z. Stachura, B. Cleff, Appl. Surf. Sci. 141, 357 (1999) in Google Scholar

[20] M Yasaka, The Rigaku Journal 26, 1 (2010) Search in Google Scholar

[21] M. Kolasinska, M. Zebala, M. Krasowka, P. Warszynski, J. Colloid Interf. Sci. 326, 301 (2008) in Google Scholar PubMed

[22] M. Rusu, D. Kuckling, H. Mohwald, M. Schonhoff, J. Colloid Interf. Sci. 298, 124 (2006) in Google Scholar PubMed

[23] C.H. Chiang, H. Ishida, J.L. Koenig, J. Colloid Interf. Sci. 74, 396 (1980) in Google Scholar

[24] R. Pena-Alonso, F. Rubio, J. Rubio, J. Oteo, J. Mater. Sci. 42, 595 (2007) in Google Scholar

[25] E.T. Vandenberg, L. Bertilsson, B. Liedberg, K. Uvdal, R. Erlandsson, H. Elwing, I. Lundström, J. Colloid Interface Sci. 147, 103 (1991) in Google Scholar

[26] J. Lu, J. Zhang, C. Xiao, J. Appl. Polym. Sci.106, 1972 (2007) in Google Scholar

[27] M.C. Silva et al., Braz. J. Phys. 36, 499 (2006) in Google Scholar

[28] L. Ge, C. Pan, H. Chen, X. Wang, C. Wang, Z. Gu, Colloid Surface A 293, 272 (2007) in Google Scholar

[29] J. Coats, In: R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry (John Wiley & Ltd., Chiechester, 2000) 10815–10837 Search in Google Scholar

[30] D.K. Kim et al. Thin Solid Films 350, 153 (1999) in Google Scholar

[31] A.G. Richter, C.J. Yu, A. Datta, J. Kmetko, P. Dutta, Colloids and Surfaces A 3, 198 (2002) 10.1016/S0927-7757(01)00908-6Search in Google Scholar

[32] L.G. Parrat, Phys. Rev. 95, 359 (1954) in Google Scholar

[33] G. Decher, J. Schmitt, Prog. Colloid. Polym. Sci. 89, 160 (1992) in Google Scholar

[34] H.G. Tompkins, E.A. Irene (Eds.), Handbook of Ellipsometry (William Andrews Publications, Springer, Norwich, NY, 2005) 10.1007/3-540-27488-XSearch in Google Scholar

Published Online: 2012-11-29
Published in Print: 2013-2-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 9.2.2023 from
Scroll Up Arrow