Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 29, 2012

Rapid flow injection electrochemical detection of 3,3′,4,4′ tetrachlorobiphenyl using stabilized lipid membranes with incorporated sheep antibody

Dimitrios Nikolelis EMAIL logo , Nikolas Psaroudakis , Antonis Michaloliakos , Georgia-Paraskevi Nikoleli and Michael Scoullos
From the journal Open Chemistry


An electrochemical biosensor based on a supported polymerized lipid film with incorporated sheep anti-3,3′,4,4′ tetrachlorobiphenyl (PCB congener 77) antibody using flow injection analysis was developed. The polymerized lipid film contained 85% (w/w) dipalmitoylphosphatidylcholine (DPPC) and 15% (w/w) dipalmitoylphosphatidic acid (DPPA), methacrylic acid, ethylene glycol dimethacrylate, AIBN and sheep anti-congener 77 antiserum. Congener 77 was injected into flowing carrier electrolyte and the flow stopped to detect the antigen. These membranes gave only a single transient proportional to log [congener 77] from 10−8 to 10−5 M, with a detection limit of ca. 10−8 M. A membrane containing 35% (w/w) DPPA was used to examine regeneration. The maximum number of cycles was about 5.

[1] F. Kastanek, P. Kastanek, J. Hazard. Mater. B117, 185 (2005) in Google Scholar

[2] B.A. Mayes, E.E. McConnell, B.H. Neal, J.M.J. Brunner, S.B. Hamilton, T.M. Sullivan, A.C. Peters, M.J. Ryan, J.D. Toft, A.W. Singer, J.F. Brown, Jr., R.G. Menton, J.A. Moore, Toxicol. Scien. 41, 62 (1998) 10.1093/toxsci/41.1.62Search in Google Scholar

[3] F.E. Ahmed, Trends Anal. Chem. 22, 170 (2003) in Google Scholar

[4] M. Fránek, A. Deng, V. Kolár, J. Socha, Anal. Chim. Acta 444, 131 (2001) in Google Scholar

[5] M. Van Den Berg, L. Birnbaum, A.T.C. Bosveld, Environmental Health Perspectives 106(12), 775 (1998) in Google Scholar

[6] G. Ross, Ecotoxicol Environ Saf. 59(3), 275 (2004) in Google Scholar

[7] G. Fillmann, T.S. Galloway, R.C. Sanger, M.H. Depledge, J.W. Readman, Anal. Chim. Acta 461(1), 75 (2002) in Google Scholar

[8] J.C. Johnson, J.M. Van Emon, A.N. Clarke, B.N. Wamsley, Anal. Chim. Acta 428, 191 (2001) in Google Scholar

[9] P.B. Luppa, L.J. Sokoll, D.W. Chan, Anal. Chim. Acta, 314, 1 (2001) 10.1016/S0009-8981(01)00629-5Search in Google Scholar

[10] S. Laschi, M. Mascini, Anal. Chim. Acta 92(4), 425 (2002) Search in Google Scholar

[11] Y. Ding, L. Zhou, H.B. Halsall, W.R. Heineman, J. Pharm. Biomed. 19, 153 (1999) in Google Scholar

[12] I. Soo Kim, S.J. Setford, S. Saini, Anal. Chim. Acta 422, 167 (2000) in Google Scholar

[13] A.I. Michaloliakos, G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, Electroanalysis 24(3), 495 (2011) in Google Scholar

[14] S. Centi, S. Laschi, M. Franek, M. Mascini, Anal. Chim. Acta 538, 205 (2005) in Google Scholar

[15] M. Ramil Criado, I. Rodrıguez Pereiro, R. Cela Torrijos, Talanta 63, 533 (2004) in Google Scholar

[16] M.P. Llompart, R.A. Lorenzo, R. Cela, K. Li, J.M.R. Belanger, J.R. Jocelyn Pare, J. Chromatogr. A 774, 243 (1997) in Google Scholar

Published Online: 2012-11-29
Published in Print: 2013-2-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.1.2023 from
Scroll Up Arrow