Abstract
In this study, the effect of the increase in the initial concentration of Na(I) ions in the solution during biosorption of Cr(III) ions by two edible algae: marine macroalga — Enteromorpha prolifera and microalga — Spirulina sp. was investigated. During biosorption, essential elements are exchanged with alkali and alkaline earth metal ions (e.g. Na(I) ions), which are naturally bound with the biomass. The goal of this study was to investigate the effect of the increase in concentration of Na(I) ions on biosorption performance. The equilibrium of the process is described by Langmuir equation. It was found that with the increase in the initial concentration of NaCl (from 132 to 7331 mg L−1), there was a lower biosorption capacity of Enteromorpha prolifera (from 85.8 to 51.0 mg g−1) and Spirulina sp. (74.2 to 20.7 mg g−1) towards Cr(III) ions. It was also possible to determine the number of times the solution used in the biosorption process can be recycled and yet mantain high biosorption capacity. The determined numbers were: 16 for Enteromorpha prolifera and 19 for Spirulina sp.
[1] A. Zielińska, K. Chojnacka, M. Simonić, Am. J. Appl. Sci. 6, 1093 (2009) http://dx.doi.org/10.3844/ajassp.2009.1093.110510.3844/ajassp.2009.1093.1105Search in Google Scholar
[2] K. Chojnacka, Talanta 70, 966 (2006) http://dx.doi.org/10.1016/j.talanta.2006.05.06310.1016/j.talanta.2006.05.063Search in Google Scholar
[3] D. Kratochvil, P. Pimentel, B. Volesky, Environ. Sci. Technol. 32, 2693 (1998) http://dx.doi.org/10.1021/es971073u10.1021/es971073uSearch in Google Scholar
[4] M.C. Rollemberg, M.S.L. Simões Gonçalves, Bioelectrochemistry 52, 57 (2000) http://dx.doi.org/10.1016/S0302-4598(00)00084-210.1016/S0302-4598(00)00084-2Search in Google Scholar
[5] A. Zielińska, K. Chojnacka, J. Sci. Food Agric. 89, 2292 (2009) http://dx.doi.org/10.1002/jsfa.372310.1002/jsfa.3723Search in Google Scholar
[6] K. Chojnacka, H. Górecki, A. Zielińska, I. Michalak, Przem. Chem. 88, 634 (2009) Search in Google Scholar
[7] I. Michalak, K. Chojnacka, Przem. Chem. 88, 512 (2009) 10.1002/jsfa.3195Search in Google Scholar
[8] S. Schiewer, B. Volesky, Environ. Sci. Technol. 31, 2478 (1997) http://dx.doi.org/10.1021/es960751u10.1021/es960751uSearch in Google Scholar
[9] L. Deng, Y. Su, H. Su, X. Wang, X. Zhu, J. Hazard. Mat. 143, 220 (2007) http://dx.doi.org/10.1016/j.jhazmat.2006.09.00910.1016/j.jhazmat.2006.09.009Search in Google Scholar
[10] P. Kaewsarn, Chemosphere 47, 1081 (2002) http://dx.doi.org/10.1016/S0045-6535(01)00324-110.1016/S0045-6535(01)00324-1Search in Google Scholar
[11] R. Nabizadeh, K. Naddafi, R. Saeedi, Biotechnology 5(1), 21 (2006) Search in Google Scholar
[12] S.B. Choi, Y.-S. Yun, Biotechnol. Lett. 26, 331 (2004) http://dx.doi.org/10.1023/B:BILE.0000015453.20708.fc10.1023/B:BILE.0000015453.20708.fcSearch in Google Scholar
[13] X. Zhao, N. Song, W. Zhou, Q. Jia, Cent. Eur. J. Chem. 10(4), 927 (2012) http://dx.doi.org/10.2478/s11532-012-0008-310.2478/s11532-012-0008-3Search in Google Scholar
[14] I. Michalak, K. Chojnacka, Appl. Biochem. Biotechnol. 160, 1540 (2010) http://dx.doi.org/10.1007/s12010-009-8635-710.1007/s12010-009-8635-7Search in Google Scholar
[15] A. Saeid, K. Chojnacka, Chem. Eng. J. 197, 49 (2012) http://dx.doi.org/10.1016/j.cej.2012.05.00110.1016/j.cej.2012.05.001Search in Google Scholar
[16] I. Michalak, K. Chojnacka, World J. Microbiol. Biotechnol. 25, 997 (2009) http://dx.doi.org/10.1007/s11274-009-9976-710.1007/s11274-009-9976-7Search in Google Scholar
[17] N. Yongnian, C. Shouhui, K. Serge, Anal. Chim. Acta. 463, 305 (2002) http://dx.doi.org/10.1016/S0003-2670(02)00437-310.1016/S0003-2670(02)00437-3Search in Google Scholar
[18] Y.S. Yun, D. Park, J.M. Park, B. Volesky, Environ. Sci. Technol. 35, 4353 (2001) http://dx.doi.org/10.1021/es010866k10.1021/es010866kSearch in Google Scholar PubMed
© 2013 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.