Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 23, 2013

Spectral properties of coumarin derivatives in various environments

Alzbeta Holubekova, Pavel Mach and Jan Urban
From the journal Open Chemistry


The structural and spectral properties of coumarin derivatives in complex environments were investigated within the time-dependent density functional theory (TD DFT). Absorption spectra calculations were obtained at TD PBE0/6-31+G(d,p) level of theory for coumarin47 in the gas-phase and in various polar and non-polar organic solvents. The geometries of coumarins 6, 30, 47 and 522 in the gas phase and in inclusion complexes with the β-cyclodextrin (βCD) were determined by PM3 and DFT (HCTH/6-31G) calculations. Encapsulation of coumarin in βCD and associated changes in electronic structure produced either a red or blue shift in the absorption spectra of coumarins. A proposed cavity model for βCD-coumarin complex in water solution allowed identification of various contributions to the overall shift in the absorption spectra of coumarin upon complex formation in a solvent environment

[1] N.C. Maiti, M.M.G. Krishna, P.J. Britto, N. Periasamy, J. Phys. Chem. B 101, 11051 (1997) in Google Scholar

[2] K. Ray, A.K. Dutta, T.N. Misra, J. Lumin. 71, 123 (1997) in Google Scholar

[3] J. Panyam, S.K. Sahoo, S. Prabha, T. Bargar, V. Labhasetwar, Int. J. Pharm. 262, 1 (2003) in Google Scholar

[4] C.D. Grant, M.R. DeRitter, K.E. Steege, T.A. Fadeeva, E.W. Castner, Langmuir 21, 1745 (2005) in Google Scholar

[5] J.A. Hamilton, L.K. Steinrauf, Acta Crystallogr. 24, 1560 (1968) in Google Scholar

[6] D. Haiyun, C. Jianbin, Z. Guomei, S. Shaomin, P. Jinhao, Spectrochim. Acta A 59, 3421 (2003) in Google Scholar

[7] Y. Zhang, S. Yu, F. Bao, Carbohydr. Res. 343, 2504 (2008) in Google Scholar

[8] C. Nunez-Aguero, C. Escobar-Llanos, D. Diaz, C. Jaime, R. Garduno-Juarez, Tetrahedron 62, 4162 (2006) in Google Scholar

[9] A. Bernini, O. Spiga, A. Ciutti, M. Scarselli, G. Bottoni, P. Mascagni, N. Niccolai, Eur. J. Pharm. Sci. 22, 445 (2004) in Google Scholar

[10] X. Wen, F. Tan, Z. Jing, Z. Liu, J. Pharm. Biomed. Anal. 34, 517 (2004) in Google Scholar

[11] M.B. de Jesus, L. de Matos Alves Pinto, L.F Fraceto, Y. Takahata, A.C.S. Lino, C. Jaime, E. de Paula, J. Pharm. Biomed. Anal. 41, 1428 (2006) in Google Scholar PubMed

[12] C.W. Lee, S.J. Kim, Y.S. Youn, E. Widjojokusumo, Y.H. Lee, J. Kim, Y.W. Lee, R.R. Tjandrawinata, J. Supercrit. Fluids 55, 348 (2010) in Google Scholar

[13] D. Bonenfant, P. Niquette, M. Mimeault, A. Furtos-Matei, R. Hausler, Water Res. 43, 3575 (2009) in Google Scholar PubMed

[14] A. Abou-Okeil, A. El-Shafie, Carbohydr. Polym. 84, 593 (2011) in Google Scholar

[15] E. Ziemons, G. Dive, B. Debrus, V. Barillaro, M. Frederich, R. Lejeune, L. Angenot, L. Delattre, L. Thunus, Hubert P, J. Pharm. Biomed. Analysis. 43, 910 (2007) in Google Scholar PubMed

[16] V. Harabagiu, B.C. Simionescu, M. Pinteala, C. Merrienne, J. Mahuteau, P. Guegan, H. Cheradame, Carbohydr. Polym. 56, 301 (2004) in Google Scholar

[17] F. Jara, M. Domínguez, M.C. Rezende, Tetrahedron 62, 7817 (2006) in Google Scholar

[18] M.B. de Jesus, L. de Matos Alves Pinto, L.F Fraceto, Y. Takahata, A.C.S. Lino, C. Jaime, E. de Paula, J. Pharm. Biomed. Anal. 41, 1428 (2006) in Google Scholar

[19] J.S. Holt, J. Mol. Struct. 965, 31 (2010) in Google Scholar

[20] L. Liu, Q.X. Guo, J. Incl. Phenom. Macrocycl. Chem. 42, 1 (2002) in Google Scholar

[21] M. Hillebrand, S. Ionescu, Chem. Phys. 293, 53 (2003) in Google Scholar

[22] V.K. Sharma, P.D. Saharo, N. Sharma, R.C. Rastogi, S.K. Ghoshal, D. Mohan, Spectrochim. Acta A 59, 1161 (2003) in Google Scholar

[23] T. Tsuji, M. Onoda, Y. Otani, T. Ohwada, T. Nakajima, K. Hirao, Chem. Phys. Lett. 473, 196 (2009) in Google Scholar

[24] D. Jacquemin, E.A. Perpète, X. Assfeld, G. Scalmani, M.J. Frisch, C. Adamo, Chem. Phys. Lett. 438, 208 (2007) in Google Scholar

[25] J. Preat, D. Jacquemin, V. Wathelet, J.M. André, E.A. Perpète, J. Phys. Chem. A 110, 8144 (2006) in Google Scholar PubMed

[26] K. Deuk Seo, H. Min Song, M. Jun Lee, M. Pastore, C. Anselmi, F. De Angelis, M.K. Nazeeruddin, M. Gräetzel, H. Kyu Kim, Dyes Pigm. 90, 304 (2011) in Google Scholar

[27] D. Jacquemin, A. Planchat, C. Adamo, Benedetta Mennucci, J. Chem. Theory Comput. 8, 2359 (2012) in Google Scholar PubMed

[28] R. Sánchez-de-Armas, M. A. San-Miguel, J. Oviedo, J. F. Sanz, Phys. Chem. Chem. Phys. 14, 225 (2012) in Google Scholar

[29] B. Xu, J. Yang, X. Jiang, Y. Wang, H. Sun, J. Yin, J. Mol. Struct. 917, 15 (2009) in Google Scholar

[30] T. Sakata, Y. Kawashima, H. Nakano, Int. J. Quantum. Chem. 109, 1940 (2009) in Google Scholar

[31] W. Zhao, Y. Ding, Q. Xia, J. Comput. Chem. 32, 545 (2011) in Google Scholar PubMed

[32] J.A. Key, S. Koh, Q.K. Timerghazin, A. Brown, C.W. Cairo, Dyes Pigm. 82, 196 (2009) in Google Scholar

[33] W. Zhao, W. Bian, J. Mol. Struct. 859, 73 (2008) in Google Scholar

[34] F.H. Allen, Acta Crystallogr. 58, 380 (2002) in Google Scholar PubMed

[35] HyperChem(TM) Professional 7.51 (Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA, 2002) Search in Google Scholar

[36] J.J.P. Stewart, J. Comput. Chem. 10, 209 (1989) in Google Scholar

[37] J.J.P. Stewart, J. Comput. Chem. 10, 221 (1989) in Google Scholar

[38] A.D. Boese, N.C. Handy, J. Chem. Phys. 114, 5497 (2001) in Google Scholar

[39] C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999) in Google Scholar

[40] A.D. Becke, Phys. Rev. A 38, 3098 (1988) in Google Scholar

[41] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785 (1988) in Google Scholar

[42] A.D. Becke, J. Chem. Phys. 98, 5648 (1993) in Google Scholar

[43] C. Hättig, F. Weigend; J. Chem. Phys. 113, 5154 (2000) in Google Scholar

[44] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005) in Google Scholar

[45] M. Cossi, G. Scalmani, N. Rega, and V. Barone, J. Chem. Phys. 117, 43 (2002) in Google Scholar

[46] M. Maroncelli, L. Reynolds, M.L. Horng, J.A. Gardecki, S.J.V. Frankland, J. Phys. Chem. 100, 10337 (1996) in Google Scholar

[47] M. Maroncelli, G.R. Fleming, J. Chem. Phys. 86, 6221 (1987) in Google Scholar

[48] M. Maroncelli, M.L. Horng, J.A. Gardecki, A. Papazyan, J. Phys. Chem. 99, 17311 (1995) in Google Scholar

[49] A. Broo, A. Holmén, J. Phys. Chem. A. 101, 3589 (1997) in Google Scholar

[50] M.J. Frisch, et al., Gaussian 03, Revision D. 02 (Gaussian, Inc., Wallingford, CT, 2004) Search in Google Scholar

[51] R. Ahlrichs, M. Bar, M. Haser, H. Horn, C. Kolmel, Chem. Phys. Lett. 162,165 (1989) in Google Scholar

[52] M.S. Zakerhamidi, A. Ghanadzadeh, M. Moghadam, Spectrochim. Acta A 78, 961 (2011) in Google Scholar PubMed

[53] M.S. Zakerhamidi, A. Ghanadzadeh, H. Tajalli, M. Moghadam, M. Jassas, R. Hosseini, Spectrochim. Acta A 77, 337 (2010) in Google Scholar PubMed

[54] T. López Arbeloa, F. López Arbeloa, M.J. Tapia, I. López Arbeloa, J. Phys. Chem. 97, 4704 (1993) in Google Scholar

[55] S. Bakkialakshmi, T. Menaka, Rec. Res. Sci. Tech. 2, 58 (2010) Search in Google Scholar

[56] C. Tablet, I. Matei, E. Pincu, V. Meltzer, M. Hillebrand, J. Mol. Liq. 168, 47 (2012) in Google Scholar

[57] M. Nowakowska, M. Smoluch, D. Sendor, J. Incl. Phenom. Macrocycl. Chem. 40, 213 (2001) in Google Scholar

Published Online: 2013-1-23
Published in Print: 2013-4-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow