Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 27, 2013

Facile synthesis of nanoscaled α-Fe2O3, CuO and CuO/Fe2O3 hybrid oxides and their electrocatalytic and photocatalytic properties

Lu Pan, Jing Tang and Fengwu Wang
From the journal Open Chemistry

Abstract

A facile and easily controlled route was designed to synthesize nano-structured Fe2O3, CuO, and CuO/Fe2O3 hybrid oxides with different Cu/Fe molar ratios via a hydrothermal procedure. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and field-emission scanning electron microscopy (FE-SEM). The results showed that the morphologies of the samples changed with different Cu/Fe ratios. The electrocatalytic properties of the samples modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution were investigated. The results indicated that CuO/Fe2O3 hybrids with lower Cu/Fe ratio exhibited higher electrocatalytic activity. The photocatalytic performances of the samples for methyl orange degradation with assistance of oxydol under irradiation of visible light were studied. The results revealed that CuO/Fe2O3 hybrids with higher Cu/Fe ratio showed efficient photocatalytic activity.

[1] M. Estrella, L. Barrio, G. Zhou, X. Wang, Q. Wang, W. Wen, J.C. Hanson, A.I. Frenkel, J.A. Rodriguez, J. Phys. Chem. C. 113, 14411 (2009) http://dx.doi.org/10.1021/jp903818q10.1021/jp903818qSearch in Google Scholar

[2] D. Li, X. Liu, Q. Zhang, Y. Wang, H. Wan, Catal. Lett. 127, 377 (2009) http://dx.doi.org/10.1007/s10562-008-9693-010.1007/s10562-008-9693-0Search in Google Scholar

[3] L. Zhang, W. Wang, L. Zhou, M. Shang, S. Sun, Appl. Catal. B-Environ. 90, 458 (2009) http://dx.doi.org/10.1016/j.apcatb.2009.04.00510.1016/j.apcatb.2009.04.005Search in Google Scholar

[4] W. Li, S. Zheng, B. Cao, S. Ma, J.Nanopart. Res. 13, 2129 (2011) http://dx.doi.org/10.1007/s11051-010-9970-x10.1007/s11051-010-9970-xSearch in Google Scholar

[5] H. Liu, Y. Wei, P. Li, Y. Zhang, Y. Sunb, Mater. Chem. Phys. 102, 1 (2007) http://dx.doi.org/10.1016/j.matchemphys.2006.10.00110.1016/j.matchemphys.2006.10.001Search in Google Scholar

[6] D.K. Zhong, J. Sun, H. Inumaru, D.R. Gamelin, J. Am. Chem. Soc. 131, 6086 (2009) http://dx.doi.org/10.1021/ja901647810.1021/ja9016478Search in Google Scholar PubMed

[7] K. Pan, H. Ming, H. Yu, Y. Liu, Z. Kang, H. Zhang, S.-T. Lee, Cryst. Res.Technol. 46, 1167 (2011) http://dx.doi.org/10.1002/crat.20110025810.1002/crat.201100258Search in Google Scholar

[8] K.-S. Jang, J.-D. Kim, J. Nanosci. Nnaotechnol. 11, 4496 (2011) http://dx.doi.org/10.1166/jnn.2011.362210.1166/jnn.2011.3622Search in Google Scholar PubMed

[9] K. Song, Q. Wang, Q. Liu, H. Zhang, Y. Cheng, Sensors. 11, 485 (2011) http://dx.doi.org/10.3390/s11010048510.3390/s110100485Search in Google Scholar PubMed PubMed Central

[10] G. Jain, M. Balasubramanian, J.J. Xu, Chem. Mater. 18, 423 (2006) http://dx.doi.org/10.1021/cm052014f10.1021/cm052014fSearch in Google Scholar

[11] T. Ben-Moshe, I. Dror, B. Berkowitz, Appl. Catal. B-Environ. 85, 207 (2009) http://dx.doi.org/10.1016/j.apcatb.2008.07.02010.1016/j.apcatb.2008.07.020Search in Google Scholar

[12] C. Karunakaran, R. Dhanalakshmi, Cent. Europ. J. Chem. 7, 134 (2009) http://dx.doi.org/10.2478/s11532-008-0083-710.2478/s11532-008-0083-7Search in Google Scholar

[13] C. Karunakaran, P. Anilkumar, Sol. Energ. Mat. Sol. C. 92, 490(2008). http://dx.doi.org/10.1016/j.solmat.2007.11.00310.1016/j.solmat.2007.11.003Search in Google Scholar

[14] Y. Wang, X. Xia, J. Zhu, Y. Li, X. Wang, X. Hu, Combust. Sci. Technol. 183, 154 (2010) http://dx.doi.org/10.1080/00102202.2010.50756110.1080/00102202.2010.507561Search in Google Scholar

[15] G. Litt, C. Almquist, Appl. Catal. B: Environ. 90, 10 (2009) http://dx.doi.org/10.1016/j.apcatb.2009.02.00110.1016/j.apcatb.2009.02.001Search in Google Scholar

[16] J-L. Cao, Y. Wang, X-L. Yu, S-R. Wang, S-H. Wu, Z-Y. Yuan, Appl. Catal. B: Environ. 79, 26 (2008) http://dx.doi.org/10.1016/j.apcatb.2007.10.00510.1016/j.apcatb.2007.10.005Search in Google Scholar

[17] R. Wu, J. Qu, H. Hong, Y. Yu, Chinese Sci. Bull. 48, 2311 (2003) http://dx.doi.org/10.1360/03wb008310.1360/03wb0083Search in Google Scholar

[18] Z. Yang, Z. Yin, F. Chen, Electrochim. Acta. 56, 1089 (2011) http://dx.doi.org/10.1016/j.electacta.2010.10.08210.1016/j.electacta.2010.10.082Search in Google Scholar

[19] M. Bomio, P. Lavela, J.L. Tirado, J. Solid State Electrochem. 12, 729 (2008) http://dx.doi.org/10.1007/s10008-007-0420-310.1007/s10008-007-0420-3Search in Google Scholar

[20] I. Nedkov, R.E. Vandenberghe, T. Marinova, P. Thailhades, T. Merodiiska, I. Avramova, Appl. Surf. Sci. 253, 2589 (2006) http://dx.doi.org/10.1016/j.apsusc.2006.05.04910.1016/j.apsusc.2006.05.049Search in Google Scholar

[21] X-M. Liu, W-D. Yin, S-B. Miao, B-M. Ji, Mater. Chem. Phys. 113, 518 (2009) http://dx.doi.org/10.1016/j.matchemphys.2008.09.05410.1016/j.matchemphys.2008.09.054Search in Google Scholar

[22] X. Ma, X. Feng, X. He, H. Guo, L. Lü, J. Nat. Gas Chem. 20, 618 (2011) http://dx.doi.org/10.1016/S1003-9953(10)60253-810.1016/S1003-9953(10)60253-8Search in Google Scholar

[23] L.J. Xie, W. Chu, J.H. Sun, P. Wu, D.G. Tong, J. Mater. Sci. 46, 2179 (2011) http://dx.doi.org/10.1007/s10853-010-5055-610.1007/s10853-010-5055-6Search in Google Scholar

[24] P. Sharma, S.K. Sharma, Water Resour. Manage. 26, 4525 (2012) http://dx.doi.org/10.1007/s11269-012-0160-810.1007/s11269-012-0160-8Search in Google Scholar

[25] B-X. Li, Y-Y. Wang, T-F. Wang, Acta Phys-Chim Sin. 25(11), 2366 (2009) Search in Google Scholar

[26] L. Li, Y. Chu, Y. Liu, L. Dong, J. Phys. Chem. C. 111, 2123 (2007) http://dx.doi.org/10.1021/jp066664y10.1021/jp066664ySearch in Google Scholar

[27] S. Kakuta, T. Abe, J. Mater. Sci. 44, 2890 (2009) http://dx.doi.org/10.1007/s10853-009-3382-210.1007/s10853-009-3382-2Search in Google Scholar

[28] A. Qurashi, Z. Zhong, M.W. Alam, Solid State Sci. 12, 1516 (2010) http://dx.doi.org/10.1016/j.solidstatesciences.2010.05.00110.1016/j.solidstatesciences.2010.05.001Search in Google Scholar

[29] R. Zboril, M. Mashlan, D. Petridis, Chem. Materials.14, 969 (2002) 10.1021/cm0111074Search in Google Scholar

[30] Z. Xu, J. Yu, Nanoscale. 3, 3138 (2011) http://dx.doi.org/10.1039/c1nr10282f10.1039/c1nr10282fSearch in Google Scholar PubMed

[31] R.A. Zarate, F. Hevia, S. Fuentes, V.M. Fuenzalida, A. Zúñiga, J. Solid State Chem. 180, 1464 (2007) http://dx.doi.org/10.1016/j.jssc.2007.01.04010.1016/j.jssc.2007.01.040Search in Google Scholar

[32] J. Yu, J. Ran, Energ. Environ. Sci. 4, 1364 (2011) http://dx.doi.org/10.1039/c0ee00729c10.1039/c0ee00729cSearch in Google Scholar

[33] H. Cölfen, S. Mann, Angew. Chem. Int. Ed. 42, 2350 (2003) http://dx.doi.org/10.1002/anie.20020056210.1002/anie.200200562Search in Google Scholar PubMed

[34] G. Dai, J. Yu, G. Liu, J. Phys. Chem. C 115, 7339 (2011) http://dx.doi.org/10.1021/jp200788n10.1021/jp200788nSearch in Google Scholar

[35] Q.J. Xiang, J.G. Yu, P.K. Wong, J. Colloid Interf. Sci. 357, 163 (2011) http://dx.doi.org/10.1016/j.jcis.2011.01.09310.1016/j.jcis.2011.01.093Search in Google Scholar PubMed

Published Online: 2013-2-27
Published in Print: 2013-5-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow