Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 27, 2013

Facile synthesis of nanoscaled α-Fe2O3, CuO and CuO/Fe2O3 hybrid oxides and their electrocatalytic and photocatalytic properties

Lu Pan, Jing Tang and Fengwu Wang
From the journal Open Chemistry


A facile and easily controlled route was designed to synthesize nano-structured Fe2O3, CuO, and CuO/Fe2O3 hybrid oxides with different Cu/Fe molar ratios via a hydrothermal procedure. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and field-emission scanning electron microscopy (FE-SEM). The results showed that the morphologies of the samples changed with different Cu/Fe ratios. The electrocatalytic properties of the samples modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution were investigated. The results indicated that CuO/Fe2O3 hybrids with lower Cu/Fe ratio exhibited higher electrocatalytic activity. The photocatalytic performances of the samples for methyl orange degradation with assistance of oxydol under irradiation of visible light were studied. The results revealed that CuO/Fe2O3 hybrids with higher Cu/Fe ratio showed efficient photocatalytic activity.

[1] M. Estrella, L. Barrio, G. Zhou, X. Wang, Q. Wang, W. Wen, J.C. Hanson, A.I. Frenkel, J.A. Rodriguez, J. Phys. Chem. C. 113, 14411 (2009) in Google Scholar

[2] D. Li, X. Liu, Q. Zhang, Y. Wang, H. Wan, Catal. Lett. 127, 377 (2009) in Google Scholar

[3] L. Zhang, W. Wang, L. Zhou, M. Shang, S. Sun, Appl. Catal. B-Environ. 90, 458 (2009) in Google Scholar

[4] W. Li, S. Zheng, B. Cao, S. Ma, J.Nanopart. Res. 13, 2129 (2011) in Google Scholar

[5] H. Liu, Y. Wei, P. Li, Y. Zhang, Y. Sunb, Mater. Chem. Phys. 102, 1 (2007) in Google Scholar

[6] D.K. Zhong, J. Sun, H. Inumaru, D.R. Gamelin, J. Am. Chem. Soc. 131, 6086 (2009) in Google Scholar PubMed

[7] K. Pan, H. Ming, H. Yu, Y. Liu, Z. Kang, H. Zhang, S.-T. Lee, Cryst. Res.Technol. 46, 1167 (2011) in Google Scholar

[8] K.-S. Jang, J.-D. Kim, J. Nanosci. Nnaotechnol. 11, 4496 (2011) in Google Scholar PubMed

[9] K. Song, Q. Wang, Q. Liu, H. Zhang, Y. Cheng, Sensors. 11, 485 (2011) in Google Scholar PubMed PubMed Central

[10] G. Jain, M. Balasubramanian, J.J. Xu, Chem. Mater. 18, 423 (2006) in Google Scholar

[11] T. Ben-Moshe, I. Dror, B. Berkowitz, Appl. Catal. B-Environ. 85, 207 (2009) in Google Scholar

[12] C. Karunakaran, R. Dhanalakshmi, Cent. Europ. J. Chem. 7, 134 (2009) in Google Scholar

[13] C. Karunakaran, P. Anilkumar, Sol. Energ. Mat. Sol. C. 92, 490(2008). in Google Scholar

[14] Y. Wang, X. Xia, J. Zhu, Y. Li, X. Wang, X. Hu, Combust. Sci. Technol. 183, 154 (2010) in Google Scholar

[15] G. Litt, C. Almquist, Appl. Catal. B: Environ. 90, 10 (2009) in Google Scholar

[16] J-L. Cao, Y. Wang, X-L. Yu, S-R. Wang, S-H. Wu, Z-Y. Yuan, Appl. Catal. B: Environ. 79, 26 (2008) in Google Scholar

[17] R. Wu, J. Qu, H. Hong, Y. Yu, Chinese Sci. Bull. 48, 2311 (2003) in Google Scholar

[18] Z. Yang, Z. Yin, F. Chen, Electrochim. Acta. 56, 1089 (2011) in Google Scholar

[19] M. Bomio, P. Lavela, J.L. Tirado, J. Solid State Electrochem. 12, 729 (2008) in Google Scholar

[20] I. Nedkov, R.E. Vandenberghe, T. Marinova, P. Thailhades, T. Merodiiska, I. Avramova, Appl. Surf. Sci. 253, 2589 (2006) in Google Scholar

[21] X-M. Liu, W-D. Yin, S-B. Miao, B-M. Ji, Mater. Chem. Phys. 113, 518 (2009) in Google Scholar

[22] X. Ma, X. Feng, X. He, H. Guo, L. Lü, J. Nat. Gas Chem. 20, 618 (2011) in Google Scholar

[23] L.J. Xie, W. Chu, J.H. Sun, P. Wu, D.G. Tong, J. Mater. Sci. 46, 2179 (2011) in Google Scholar

[24] P. Sharma, S.K. Sharma, Water Resour. Manage. 26, 4525 (2012) in Google Scholar

[25] B-X. Li, Y-Y. Wang, T-F. Wang, Acta Phys-Chim Sin. 25(11), 2366 (2009) Search in Google Scholar

[26] L. Li, Y. Chu, Y. Liu, L. Dong, J. Phys. Chem. C. 111, 2123 (2007) in Google Scholar

[27] S. Kakuta, T. Abe, J. Mater. Sci. 44, 2890 (2009) in Google Scholar

[28] A. Qurashi, Z. Zhong, M.W. Alam, Solid State Sci. 12, 1516 (2010) in Google Scholar

[29] R. Zboril, M. Mashlan, D. Petridis, Chem. Materials.14, 969 (2002) 10.1021/cm0111074Search in Google Scholar

[30] Z. Xu, J. Yu, Nanoscale. 3, 3138 (2011) in Google Scholar PubMed

[31] R.A. Zarate, F. Hevia, S. Fuentes, V.M. Fuenzalida, A. Zúñiga, J. Solid State Chem. 180, 1464 (2007) in Google Scholar

[32] J. Yu, J. Ran, Energ. Environ. Sci. 4, 1364 (2011) in Google Scholar

[33] H. Cölfen, S. Mann, Angew. Chem. Int. Ed. 42, 2350 (2003) in Google Scholar PubMed

[34] G. Dai, J. Yu, G. Liu, J. Phys. Chem. C 115, 7339 (2011) in Google Scholar

[35] Q.J. Xiang, J.G. Yu, P.K. Wong, J. Colloid Interf. Sci. 357, 163 (2011) in Google Scholar PubMed

Published Online: 2013-2-27
Published in Print: 2013-5-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow