Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 29, 2013

Synthesis of poly(vinyl alcohol) — hydroxyapatite composites and characterization of their bioactivity

Zuzana Balgová, Martin Palou, Jaromír Wasserbauer and Jana Kozánková
From the journal Open Chemistry

Abstract

Abstract A series of poly(vinyl alcohol) membranes reinforced with hydroxyapatite in various weight percent — 0%, 10%, 20%, 30%, 40% and 50% were prepared. Hydroxyapatite was prepared by a sol-gel procedure using diammonium hydrogen phosphate and calcium nitrate tetrahydrate as starting materials in an alkaline aqueous environment and then mixed with a solution of poly(vinyl alcohol), which was prepared by dissolving it in water at 85°C. The different mixtures were cast in a mould and evaporated for 7 days at a temperature of 30°C to obtain 1 mm thin membranes. FTIR spectroscopy was used to identify the different functional groups in the composites. The surface morphology was examined using a scanning electron microscope. In vitro bioactivity tests in Simulated Blood Fluid were performed for up to 28 days, especially for the membrane containing 50 wt.% HA. SEM was used to characterise the surface microstructure of biocomposite membranes before and after soaking in SBF. It was observed that the formation of clusters in membranes increases with increasing amount of HA. The clusters are formed due to agglomeration and crystal growth of HA particles during drying of the membranes. The in vitro bioactivity was found to increase with soaking time of biocomposite materials in simulated blood fluid. Graphical abstract

[1] M. Vallet-Regi, C.R. Chimie 13, 174 (2010) http://dx.doi.org/10.1016/j.crci.2009.03.00410.1016/j.crci.2009.03.004Search in Google Scholar

[2] D.F. Williams, Biomaterials 30, 5897 (2009) http://dx.doi.org/10.1016/j.biomaterials.2009.07.02710.1016/j.biomaterials.2009.07.027Search in Google Scholar

[3] M. Wang, Biomaterials 24, 2133 (2003) http://dx.doi.org/10.1016/S0142-9612(03)00037-110.1016/S0142-9612(03)00037-1Search in Google Scholar

[4] M. Wang, S. Deb, W. Bonfield, Mater. Lett. 44, 119 (2000) http://dx.doi.org/10.1016/S0167-577X(00)00026-410.1016/S0167-577X(00)00026-4Search in Google Scholar

[5] P. Ducheyne, Q. Qiu, Biomaterials 20, 2287 (1999) http://dx.doi.org/10.1016/S0142-9612(99)00181-710.1016/S0142-9612(99)00181-7Search in Google Scholar

[6] H.-M. Kima, T. Himeno, T. Kokubo, T. Nakamura, Biomaterials 26, 4366 (2005) http://dx.doi.org/10.1016/j.biomaterials.2004.11.02210.1016/j.biomaterials.2004.11.022Search in Google Scholar PubMed

[7] T. Kokubo, H. Takadama, Biomaterials 27(15), 2907 (2006) http://dx.doi.org/10.1016/j.biomaterials.2006.01.01710.1016/j.biomaterials.2006.01.017Search in Google Scholar PubMed

[8] M. Palou, E. Kuzielova, M. Vitkovic, M.S.M. Noaman, Cent. Eur. J. Chem. 7(2), 228 (2009) http://dx.doi.org/10.2478/s11532-009-0002-610.2478/s11532-009-0002-6Search in Google Scholar

[9] M. Vitkovič, M.S.M. Noaman, M. Palou, S. Jantová, Cent. Eur. J. Chem. 7(2), 246 (2009) http://dx.doi.org/10.2478/s11532-009-0010-610.2478/s11532-009-0010-6Search in Google Scholar

[10] G. Lutišanová, M.T. Palou, M. Mikula, J. Kozánková, Cent. Eur. J. Chem. 10(6), 1890 (2012) http://dx.doi.org/10.2478/s11532-012-0111-510.2478/s11532-012-0111-5Search in Google Scholar

[11] D. Bakos, M. Soldan, I. Hernandez-Fuentes, Biomaterials 20, 191 (1999) http://dx.doi.org/10.1016/S0142-9612(98)00163-X10.1016/S0142-9612(98)00163-XSearch in Google Scholar

[12] C.V. Ragel, M. Vallet-Regi, L.M. Rodriguez-Lorenzo, Biomaterials 23, 1865 (2002) http://dx.doi.org/10.1016/S0142-9612(01)00313-110.1016/S0142-9612(01)00313-1Search in Google Scholar

[13] L.W. Suchanek, M. Yoshimura, J. Mater. Res. 13, 94 (1998) http://dx.doi.org/10.1557/JMR.1998.001510.1557/JMR.1998.0015Search in Google Scholar

[14] L. Hua, F.CH. Xia, R.Z. Chang, Key Engineering Materials 434–435, 590 (2010) 10.4028/www.scientific.net/KEM.434-435.590Search in Google Scholar

[15] R.Z. Wang, F.Z. Cui, H.B. Lu, H.B. Wen, C.L. Ma, H.D. Li, J. Mater. Sci. Lett. 14, 490 (1995) http://dx.doi.org/10.1007/BF0066591110.1007/BF00665911Search in Google Scholar

[16] R.J. Covert, R.D. Ott, D.N. Ku, Wear 255, 1064 (2003) http://dx.doi.org/10.1016/S0043-1648(03)00113-310.1016/S0043-1648(03)00113-3Search in Google Scholar

[17] Z. Evis, M. Sato, T.J. Webster, J. Biomed. Mater. Res. 78(3), 500 (2006) http://dx.doi.org/10.1002/jbm.a.3075010.1002/jbm.a.30750Search in Google Scholar PubMed

[18] H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biomaterials 28(22), 3338 (2007) http://dx.doi.org/10.1016/j.biomaterials.2007.04.01410.1016/j.biomaterials.2007.04.014Search in Google Scholar PubMed

[19] T. Noguchi, T. Yamamuro, M. Oka, Mater Med. 20, 1291 (1991) Search in Google Scholar

[20] Z. Huang, J. Tian, B. Yu, Y. Xu, Q. Feng, Biomed. Mater. 4, 055005 (2009) http://dx.doi.org/10.1088/1748-6041/4/5/05500510.1088/1748-6041/4/5/055005Search in Google Scholar PubMed

[21] M. Kobayashi, Y.S. Chang, M. Oka, Biomaterials 26, 3243 (2005) http://dx.doi.org/10.1016/j.biomaterials.2004.08.02810.1016/j.biomaterials.2004.08.028Search in Google Scholar PubMed

[22] Y.S. Pan, D.S. Xiong, R.Y. Ma, Wear 262, 1021 (2007) http://dx.doi.org/10.1016/j.wear.2006.10.00510.1016/j.wear.2006.10.005Search in Google Scholar

[23] F. Xu, Y. Li, X. Wang. J. Mater Sci. 39, 5669 (2004) http://dx.doi.org/10.1023/B:JMSC.0000040074.64787.b310.1023/B:JMSC.0000040074.64787.b3Search in Google Scholar

[24] Q.G. Zheng, M.X. Jiu, H.Z. Xiang, Biomed. Mater. Eng. 1, 75 (1988) Search in Google Scholar

[25] M. Supová, J. Mater. Sci. Mater. Med. 20(6), 1201 (2009) http://dx.doi.org/10.1007/s10856-009-3696-210.1007/s10856-009-3696-2Search in Google Scholar

[26] N. Pramanik, S. Mohapatra, S. Alam, Polymer Composites 29(4), 429 (2008) http://dx.doi.org/10.1002/pc.2041010.1002/pc.20410Search in Google Scholar

[27] M. Rajkumar, M.N. Sundaram, V. Rajendran, Int. J. Eng. Sci. Technol. 2(6), 2437 (2010) Search in Google Scholar

[28] L. Recman, Deformation Behavior of Nano/Micro Reinforced PMMA, PhD Thesis (Faculty of chemistry, BUT, Brno, 2010) Search in Google Scholar

[29] T. Wang, M. Turhan, S. Gunasekara, Polym. Int. 53, 911 (2004) http://dx.doi.org/10.1002/pi.146110.1002/pi.1461Search in Google Scholar

[30] I. Espigares, C. Elvira, J.F. Mano, B. Vazquez, J. San Roman, R.L. Reis, Biomaterials 23, 1883 (2003) http://dx.doi.org/10.1016/S0142-9612(01)00315-510.1016/S0142-9612(01)00315-5Search in Google Scholar

[31] L.F. Boesel, R.L. Reis, Prog. Polym. Sci. 33, 180 (2008) http://dx.doi.org/10.1016/j.progpolymsci.2007.09.00110.1016/j.progpolymsci.2007.09.001Search in Google Scholar

[32] M.S. Abu Bakar, P. Cheang, K.A. Khor, Mater. Sci. Eng. 345A, 55 (2003) 10.1016/S0921-5093(02)00289-7Search in Google Scholar

[33] J.M. Wozney, V. Rosen, Clin. Orthop. Rel. Res. 346, 26 (1998) 10.1097/00003086-199801000-00006Search in Google Scholar

[34] J. Pouchlý, Fyzikální Chemie Makromolekulárních a Koloidních Soustav, VŠCHT Praha (1998) (in Czech) Search in Google Scholar

[35] P. Atkins, J. de Paula, Physical chemistry, 7th edition(Oxford University Press, Oxford, 2002) Search in Google Scholar

Published Online: 2013-6-29
Published in Print: 2013-9-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow