Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 19, 2013

Mechanism of rhodamine 6G molecular aggregation in montmorillonite colloid

  • Marcel Lofaj EMAIL logo , Ivan Valent and Juraj Bujdák
From the journal Open Chemistry

Abstract

Stopped-flow mixing device and visible absorption spectroscopy were used for the analysis of dye rhodamine 6G (R6G) molecular aggregation in the colloids based on Na-saturated montmorillonite. Two stages of the reaction were identified: The first stage was very short and taking only several seconds, involving the adsorption of R6G cations and their initial aggregation on the surface of colloid particles. The initially formed J-aggregates exhibited similar spectral properties as monomeric form of R6G. In the second stage, initially formed aggregates converted to sandwich-type H-aggregates absorbing light at significantly lower wavelengths and adsorbed monomers. The aggregate rearrangement took several hours. Monomers, with the spectral properties identical to R6G solution, were also identified as a component in complex spectra using principal component analysis (PCA) and multivariate curve resolution (MCR). Partial bleaching of the dye was also proven. Reaction kinetics of the rearrangement of the aggregates followed the model considering a complex mechanism of the molecular aggregation. Data fits using stretched-exponential function led to the determination of rate constants, which had been in the range 10−3−4×10−3s−1.

[1] K. Takagi, Y. Sawaki, Crit. Rev. Biochem. Mol. Biol. 28, 323 (1993) http://dx.doi.org/10.3109/1040923930907843910.3109/10409239309078439Search in Google Scholar PubMed

[2] C. Sanchez, B. Lebeau, F. Chaput, J.P. Boilot, Adv. Mater. 15, 1969 (2003) http://dx.doi.org/10.1002/adma.20030038910.1002/adma.200300389Search in Google Scholar

[3] H. Y. Li, Q.A. Li, Prog. Chem. 15, 135 (2003) Search in Google Scholar

[4] J. Bujdák, P. Komadel, J. Phys. Chem. B 101, 9065 (1997) http://dx.doi.org/10.1021/jp971851510.1021/jp9718515Search in Google Scholar

[5] J. Bujdák, N. Iyi, R. Sasai, J. Phys. Chem. B 108, 4470 (2004) http://dx.doi.org/10.1021/jp037607x10.1021/jp037607xSearch in Google Scholar

[6] J. Bujdák, Appl. Clay Sci. 34, 58 (2006) http://dx.doi.org/10.1016/j.clay.2006.02.01110.1016/j.clay.2006.02.011Search in Google Scholar

[7] M. Lofaj, J. Bujdák, Phys. Chem. Miner. 39, 227 (2012) http://dx.doi.org/10.1007/s00269-011-0478-410.1007/s00269-011-0478-4Search in Google Scholar

[8] M. Kasha, Radiat. Res. 20, 55 (1963) http://dx.doi.org/10.2307/357133110.2307/3571331Search in Google Scholar

[9] A. H. Gemeay, J. Colloid Interface. Sci. 251, 235 (2002) http://dx.doi.org/10.1006/jcis.2002.841010.1006/jcis.2002.8410Search in Google Scholar PubMed

[10] F. López Arbeloa, M.J. Tapia Estévez, T. López Arbeloa, I. López Arbeloa, Langmuir 11, 3211 (1995) http://dx.doi.org/10.1021/la00008a05410.1021/la00008a054Search in Google Scholar

[11] F. L. Arbeloa, M.J.T. Estevez, T.L. Arbeloa, I.L. Arbeloa, Clay Miner. 32, 97 (1997) http://dx.doi.org/10.1180/claymin.1997.032.1.1110.1180/claymin.1997.032.1.11Search in Google Scholar

[12] J. Bujdák, N. Iyi, R. Sasai, J. Phys. Chem. B 108, 4470 (2004) http://dx.doi.org/10.1021/jp037607x10.1021/jp037607xSearch in Google Scholar

[13] J. Bujdák, N. Iyi, Y. Kaneko, A. Czímerová, R. Sasai, Phys. Chem. Chem. Phys. 5, 4680 (2003) http://dx.doi.org/10.1039/b305699f10.1039/B305699FSearch in Google Scholar

[14] A. Czímerová, L. Jankovič, J. Bujdák, J. Colloid Interface Sci. 357, 322 (2011) http://dx.doi.org/10.1016/j.jcis.2011.01.06910.1016/j.jcis.2011.01.069Search in Google Scholar PubMed

[15] C. Breen, H. Loughlin, Clay Miner. 29, 775 (1994) 10.1180/claymin.1994.029.2.04Search in Google Scholar

[16] J. Bujdák, N. Iyi, T. Fujita, Clay Miner. 37, 121 (2002) http://dx.doi.org/10.1180/000985502371002210.1180/0009855023710022Search in Google Scholar

[17] A. Anedda, C.M. Carbonaro, R. Corpino, P.C. Ricci, S. Grandi, P.C. Mustarelli, J. Non-Cryst. Solids 353, 481 (2007) http://dx.doi.org/10.1016/j.jnoncrysol.2006.10.01410.1016/j.jnoncrysol.2006.10.014Search in Google Scholar

[18] C. M. Carbonaro, F. Meinardi, P.C. Ricci, M. Salis, A. Anedda, J. Phys. Chem. B 113, 5111 (2009) http://dx.doi.org/10.1021/jp810835j10.1021/jp810835jSearch in Google Scholar PubMed

[19] S. Salleres, F.L. Arbeloa, V.M. Martinez, T. Arbeloa, I.L. Arbeloa, Langmuir 26, 930 (2010) http://dx.doi.org/10.1021/la902414n10.1021/la902414nSearch in Google Scholar PubMed

[20] J. Bujdák, N. Iyi, J. Colloid Interface Sci. 388, 15 (2012) http://dx.doi.org/10.1016/j.jcis.2012.08.02010.1016/j.jcis.2012.08.020Search in Google Scholar PubMed

[21] A. Tomioka, A. Fujimoto, S. Kinoshita, T. Yamauchi, T. Kourahama, Ultramicroscopy 108, 1013 (2008) http://dx.doi.org/10.1016/j.ultramic.2008.04.00910.1016/j.ultramic.2008.04.009Search in Google Scholar PubMed

[22] M. A. Noginov, M. Vondrova, S.M. Williams, M. Bahoura, V.I. Gavrilenko, S.M. Black, V.P. Drachev, V.M. Shalaev, A. Sykes, Journal of Optics a-Pure and Applied Optics 7, S219 (2005) http://dx.doi.org/10.1088/1464-4258/7/2/02910.1088/1464-4258/7/2/029Search in Google Scholar

[23] P. Bojarski, A. Matczuk, C. Bojarski, A. Kawski, B. Kuklinski, G. Zurkowska, H. Diehl, Chem. Phys. 210, 485 (1996) http://dx.doi.org/10.1016/0301-0104(96)00141-310.1016/0301-0104(96)00141-3Search in Google Scholar

[24] M. J.T. Estevez, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, R.A. Schoonheydt, Clay Miner. 29, 105 (1994) http://dx.doi.org/10.1180/claymin.1994.029.1.1210.1180/claymin.1994.029.1.12Search in Google Scholar

[25] M. Lofaj, J. Bujdák, Phys. Chem. Miner. 39, 227 (2012) http://dx.doi.org/10.1007/s00269-011-0478-410.1007/s00269-011-0478-4Search in Google Scholar

[26] F. G. Halaka, G.T. Babcock, J.L. Dye, Biophys. J 48, 209 (1985) http://dx.doi.org/10.1016/S0006-3495(85)83774-710.1016/S0006-3495(85)83774-7Search in Google Scholar

[27] H. Abdollahi, R. Tauler, Chemom. Intell Lab. Syst. 108, 100 (2011) http://dx.doi.org/10.1016/j.chemolab.2011.05.00910.1016/j.chemolab.2011.05.009Search in Google Scholar

[28] H. Parastar, M. Jalali-Heravi, R. Tauler, Trac-Trends Anal. Chem. 31, 134 (2012) http://dx.doi.org/10.1016/j.trac.2011.07.01010.1016/j.trac.2011.07.010Search in Google Scholar

[29] F. L. Arbeloa, T.L. Arbeloa, I.L. Arbeloa, J. Colloid Interface Sci. 187, 105 (1997) http://dx.doi.org/10.1006/jcis.1996.467210.1006/jcis.1996.4672Search in Google Scholar PubMed

[30] M. J.T. Estevez, F.L. Arbeloa, T.L. Arbeloa, I.L. Arbeloa, Langmuir 9, 3629 (1993) http://dx.doi.org/10.1021/la00036a04510.1021/la00036a045Search in Google Scholar

[31] M. J.T. Estevez, F.L. Arbeloa, T.L. Arbeloa, I.L. Arbeloa, J. Colloid Interface Sci. 171, 439 (1995) http://dx.doi.org/10.1006/jcis.1995.120010.1006/jcis.1995.1200Search in Google Scholar

[32] J. Bujdák, V.M. Martinez, F.L. Arbeloa, N. Iyi, Langmuir 23, 1851 (2007) http://dx.doi.org/10.1021/la062437b10.1021/la062437bSearch in Google Scholar

[33] R. Chaudhuri, F.L. Arbeloa, I.L. Arbeloa, Langmuir 16, 1285 (2000) http://dx.doi.org/10.1021/la990772c10.1021/la990772cSearch in Google Scholar

[34] J. Bujdák, N. Iyi, J. Phys. Chem. B 110, 2180 (2006) http://dx.doi.org/10.1021/jp055337810.1021/jp0553378Search in Google Scholar

[35] H. N. Kim, M.H. Lee, H.J. Kim, J.S. Kim, J. Yoon, Chem. Soc. Rev. 37, 1465 (2008) http://dx.doi.org/10.1039/b802497a10.1039/b802497aSearch in Google Scholar

[36] R. Sasai, T. Fujita, N. Iyi, H. Itoh, K. Takagi, Langmuir 18, 6578 (2002) http://dx.doi.org/10.1021/la020183y10.1021/la020183ySearch in Google Scholar

[37] N. Iyi, R. Sasai, T. Fujita, T. Deguchi, T. Sota, F. López Arbeloa, K. Kitamura, Appl. Clay Sci. 22, 125 (2002) http://dx.doi.org/10.1016/S0169-1317(02)00144-810.1016/S0169-1317(02)00144-8Search in Google Scholar

[38] F. López Arbeloa, V. Martínez Martínez, Chem. Mater. 18, 1407 (2006) http://dx.doi.org/10.1021/cm051518a10.1021/cm051518aSearch in Google Scholar

[39] F. López Arbeloa, V. Martínez Martínez, T. Arbeloa, I. López Arbeloa, J. Photochem. Photobiol. C 8, 85 (2007) http://dx.doi.org/10.1016/j.jphotochemrev.2007.03.00310.1016/j.jphotochemrev.2007.03.003Search in Google Scholar

[40] S. Salleres, F. López Arbeloa, V. Martínez, C. Corcóstegui, I. López Arbeloa, Mater. Chem. Phys. 116, 550 (2009) http://dx.doi.org/10.1016/j.matchemphys.2009.04.03010.1016/j.matchemphys.2009.04.030Search in Google Scholar

[41] F. López Arbeloa, V. Martínez Martínez, J. Photochem. Photobiol. A 181, 44 (2006) http://dx.doi.org/10.1016/j.jphotochem.2005.10.03110.1016/j.jphotochem.2005.10.031Search in Google Scholar

[42] M. G. Neumann, C.C. Schmitt, F. Gessner, J. Colloid Interface Sci. 177, 495 (1996) http://dx.doi.org/10.1006/jcis.1996.006310.1006/jcis.1996.0063Search in Google Scholar

[43] R. F. Pasternack, C. Fleming, S. Herring, P.J. Collings, J. dePaula, G. DeCastro, E.J. Gibbs, Biophys. J. 79, 550 (2000) http://dx.doi.org/10.1016/S0006-3495(00)76316-810.1016/S0006-3495(00)76316-8Search in Google Scholar

[44] A. K. Chibisov, H. Gorner, T.D. Slavnova, Chem. Phys. Lett. 390, 240 (2004) http://dx.doi.org/10.1016/j.cplett.2004.03.13110.1016/j.cplett.2004.03.131Search in Google Scholar

[45] L. P.F. Aggarwal, I.E. Borissevitch, Spectrochim. Acta, Part A 63, 227 (2006) http://dx.doi.org/10.1016/j.saa.2005.05.00910.1016/j.saa.2005.05.009Search in Google Scholar PubMed

[46] H. Gorner, A.K. Chibisov, T.D. Slavnova, J. Phys. Chem. B 110, 3917 (2006) http://dx.doi.org/10.1021/jp055876c10.1021/jp055876cSearch in Google Scholar PubMed

Published Online: 2013-7-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.11.2023 from https://www.degruyter.com/document/doi/10.2478/s11532-013-0289-1/html
Scroll to top button