Abstract
Nanocrystalline powders of doped Bi2Te3, with Ag (S1 sample), Sb (S2 sample), Sn (S3 sample) ions with different morphology and particle size 30–50 nm were prepared by a ultrasonically assisted hydrothermal method in alkaline aqueous solution with different concentration of NaBH4 as reducing agent at 200°C for 3 hours and 80% fill degree of autoclave. The influence of dopants and hydrothermal treatment conditions on the formation features, phase composition, particle size, morphology and properties of the products were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and electrical measurements. This paper reports a comparative study regarding the dopants influence to the shape and size of nano-structured thermoelectric materials. It was found that hydrothermal processing results in formation of low dimensional dispersion of doped Bi2Te3 nanostructures with desired shape and size and high degree of crystallinity with typical semiconductor behavior.
[1] F. J. DiSalvo, Science 285, 703 (1999) http://dx.doi.org/10.1126/science.285.5428.70310.1126/science.285.5428.703Search in Google Scholar
[2] B. S. Sales, Science 295, 1248 (2002) http://dx.doi.org/10.1126/science.106989510.1126/science.1069895Search in Google Scholar
[3] A. I. Hochbaum, et al., Nature 451, 163 (2008) http://dx.doi.org/10.1038/nature0638110.1038/nature06381Search in Google Scholar
[4] X. A. Fan, J.Y. Yang, Z. Xie, K. Li, W. Zhu, X.K. Duan, C.J. Xiao, Q.Q. Zhang, J. Phys. D: Appl. Phys. 40, 5975 (2007) http://dx.doi.org/10.1088/0022-3727/40/19/02910.1088/0022-3727/40/19/029Search in Google Scholar
[5] A. Boyer, E. Cisse, Mater. Sci. Eng. B 113, 103 (1992) http://dx.doi.org/10.1016/0921-5107(92)90149-410.1016/0921-5107(92)90149-4Search in Google Scholar
[6] L. D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993) http://dx.doi.org/10.1103/PhysRevB.47.1272710.1103/PhysRevB.47.12727Search in Google Scholar
[7] L. D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993) http://dx.doi.org/10.1103/PhysRevB.47.1663110.1103/PhysRevB.47.16631Search in Google Scholar
[8] S. H. Yu, M. Yoshimura, Adv. Mater. 14, 296 (2002) http://dx.doi.org/10.1002/1521-4095(20020219)14:4<296::AID-ADMA296>3.0.CO;2-610.1002/1521-4095(20020219)14:4<296::AID-ADMA296>3.0.CO;2-6Search in Google Scholar
[9] P. W. Zhu, X. Jia, H.Y. Chen, W.L. Guo, L.X. Chen, D.M. Li, H.A. Ma, G.Z. Ren, G.T. Zou, Solid State Communications 123, 43 (2002) http://dx.doi.org/10.1016/S0038-1098(02)00182-510.1016/S0038-1098(02)00182-5Search in Google Scholar
[10] M. S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Adv. Mater. 14, 665 (2002) http://dx.doi.org/10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-B10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-BSearch in Google Scholar
[11] M. Martın-Gonzalez, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Adv. Mater. 15, 1003 (2003) http://dx.doi.org/10.1002/adma.20030478110.1002/adma.200304781Search in Google Scholar
[12] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001) http://dx.doi.org/10.1038/3509801210.1038/35098012Search in Google Scholar
[13] T. C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002) http://dx.doi.org/10.1126/science.107288610.1126/science.1072886Search in Google Scholar
[14] S. H. Yu, J. Yang, Y.S. Wu, Z.H. Han, J. Lu, Y. Xie, Y.T. Qian, J. Mater. Chem. 8, 1949 (1998) http://dx.doi.org/10.1039/a804105i10.1039/a804105iSearch in Google Scholar
[15] Y. Deng, X.S. Zhou, G.D. Wei, J. Liu, C.W. Nan, S.J. Zhao, J. Phys. Chem. Solids 63, 2119 (2002) http://dx.doi.org/10.1016/S0022-3697(02)00261-510.1016/S0022-3697(02)00261-5Search in Google Scholar
[16] M. A. Meitl, T.M. Dellinger, P.V. Braun, Adv. Funct. Mater. 13, 795 (2003) http://dx.doi.org/10.1002/adfm.20030443310.1002/adfm.200304433Search in Google Scholar
[17] Y. Deng, G.D. Wei, C.W. Nan, Chem. Phys. Lett. 368, 639 (2003) http://dx.doi.org/10.1016/S0009-2614(02)01956-510.1016/S0009-2614(02)01956-5Search in Google Scholar
[18] Y. Deng, C.W. Nan, G.D. Wei, L. Guo, Y.H. Lin, Chem. Phys. Lett. 374, 410 (2003) http://dx.doi.org/10.1016/S0009-2614(03)00783-810.1016/S0009-2614(03)00783-8Search in Google Scholar
[19] X. B. Zhao, Y.H. Zhang, X.H. Ji, Inorg. Chem. Comm. 7, 386 (2004) http://dx.doi.org/10.1016/j.inoche.2003.12.02010.1016/j.inoche.2003.12.020Search in Google Scholar
[20] X. B. Zhao, X.H. Ji, Y.H. Zhang, B.H. Lu, J. Alloys Compd. 368, 349 (2004) http://dx.doi.org/10.1016/j.jallcom.2003.08.07010.1016/j.jallcom.2003.08.070Search in Google Scholar
[21] C. Lazau, P. Sfirloaga, C. Orha, C. Ratiu, I. Grozescu, Mat. Lett. 65, 337 (2011) http://dx.doi.org/10.1016/j.matlet.2010.10.05210.1016/j.matlet.2010.10.052Search in Google Scholar
[22] A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer, Thin Solid Films 315, 99 (1998) http://dx.doi.org/10.1016/S0040-6090(97)00792-X10.1016/S0040-6090(97)00792-XSearch in Google Scholar
[23] X. B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, J.P. Tu, Appl. Phys. A 80, 1567 (2005) http://dx.doi.org/10.1007/s00339-004-2956-810.1007/s00339-004-2956-8Search in Google Scholar
[24] B. Zhou, B. Liu, L.-P. Jiang, J.-J. Zhu, Ultrasonics Sonochemistry 14, 229 (2007) http://dx.doi.org/10.1016/j.ultsonch.2006.04.00110.1016/j.ultsonch.2006.04.001Search in Google Scholar PubMed
[25] T. J. Mason, J.P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry (John Wiley and Sons, New York, 1988) 41 Search in Google Scholar
[26] K. S. Suslick, Ultrasound: Its Chemistry, Physical, and Biological Effects (VCH Publishers, New York, 1988) 123–146 Search in Google Scholar
[27] K. S. Suslick, Science 247, 1439 (1990) http://dx.doi.org/10.1126/science.247.4949.143910.1126/science.247.4949.1439Search in Google Scholar PubMed
[28] Y. -H Park, L. Xue-Dong, Materials Research Society Proceedings 691, G8.24 (2001) doi:10.1557/PROC-691-G8.24 10.1557/PROC-691-G8.24Search in Google Scholar
[29] S. Sugihara, S. Kawashima, I. Yonekura, S.S. Hiroaki, Proceedings of the 16th International Conference on Thermoelectrics, ICT 63 (1997) Search in Google Scholar
[30] J. Navratil, I. Klichova, S. Karamazov, J. Sramkova, J. Horak, J. Solid State Chem. 140, 29 (1998) http://dx.doi.org/10.1006/jssc.1998.781810.1006/jssc.1998.7818Search in Google Scholar
[31] P. Jeevanandam, Y. Diamant, M. Motiei, A. Gedanken, Phys. Chem. Chem. Phys. 3, 4107 (2001) http://dx.doi.org/10.1039/b100173f10.1039/b100173fSearch in Google Scholar
[32] P. Cintas, J.-L. Luche, Green Chem. 1(3), 115 (1999) http://dx.doi.org/10.1039/a900593e10.1039/a900593eSearch in Google Scholar
[33] A. Gedanken, Ultrason. Sonochem. 11, 47 (2004) http://dx.doi.org/10.1016/j.ultsonch.2004.01.03710.1016/j.ultsonch.2004.01.037Search in Google Scholar PubMed
[34] L. C. Hagenson, L.K. Doraiswamy, Chem. Eng. Sci. 53, 131 (1997) 10.1016/S0009-2509(97)00193-0Search in Google Scholar
[35] P. Benhacene, C. Labbe’, G. Petrier, Reverdy, New J. Chem. 19, 989 (1995) Search in Google Scholar
[36] S. Gupta, S. Neeleshwar, V. Kumar, Y.Y. Chen, Adv. Mat. Lett. 3(1), 50 (2012) http://dx.doi.org/10.5185/amlett.2011.728510.5185/amlett.2011.7285Search in Google Scholar
© 2013 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.