Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 19, 2013

Doped Bi2Te3 nano-structured semiconductors obtained by ultrasonically assisted hydrothermal method

  • Stefan Novaconi EMAIL logo , Paulina Vlazan , Iosif Malaescu , Iulia Badea , Ioan Grozescu and Paula Sfirloaga
From the journal Open Chemistry


Nanocrystalline powders of doped Bi2Te3, with Ag (S1 sample), Sb (S2 sample), Sn (S3 sample) ions with different morphology and particle size 30–50 nm were prepared by a ultrasonically assisted hydrothermal method in alkaline aqueous solution with different concentration of NaBH4 as reducing agent at 200°C for 3 hours and 80% fill degree of autoclave. The influence of dopants and hydrothermal treatment conditions on the formation features, phase composition, particle size, morphology and properties of the products were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and electrical measurements. This paper reports a comparative study regarding the dopants influence to the shape and size of nano-structured thermoelectric materials. It was found that hydrothermal processing results in formation of low dimensional dispersion of doped Bi2Te3 nanostructures with desired shape and size and high degree of crystallinity with typical semiconductor behavior.

[1] F. J. DiSalvo, Science 285, 703 (1999) in Google Scholar

[2] B. S. Sales, Science 295, 1248 (2002) in Google Scholar

[3] A. I. Hochbaum, et al., Nature 451, 163 (2008) in Google Scholar

[4] X. A. Fan, J.Y. Yang, Z. Xie, K. Li, W. Zhu, X.K. Duan, C.J. Xiao, Q.Q. Zhang, J. Phys. D: Appl. Phys. 40, 5975 (2007) in Google Scholar

[5] A. Boyer, E. Cisse, Mater. Sci. Eng. B 113, 103 (1992) in Google Scholar

[6] L. D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993) in Google Scholar

[7] L. D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993) in Google Scholar

[8] S. H. Yu, M. Yoshimura, Adv. Mater. 14, 296 (2002)<296::AID-ADMA296>3.0.CO;2-610.1002/1521-4095(20020219)14:4<296::AID-ADMA296>3.0.CO;2-6Search in Google Scholar

[9] P. W. Zhu, X. Jia, H.Y. Chen, W.L. Guo, L.X. Chen, D.M. Li, H.A. Ma, G.Z. Ren, G.T. Zou, Solid State Communications 123, 43 (2002) in Google Scholar

[10] M. S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Adv. Mater. 14, 665 (2002)<665::AID-ADMA665>3.0.CO;2-B10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-BSearch in Google Scholar

[11] M. Martın-Gonzalez, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Adv. Mater. 15, 1003 (2003) in Google Scholar

[12] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001) in Google Scholar

[13] T. C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002) in Google Scholar

[14] S. H. Yu, J. Yang, Y.S. Wu, Z.H. Han, J. Lu, Y. Xie, Y.T. Qian, J. Mater. Chem. 8, 1949 (1998) in Google Scholar

[15] Y. Deng, X.S. Zhou, G.D. Wei, J. Liu, C.W. Nan, S.J. Zhao, J. Phys. Chem. Solids 63, 2119 (2002) in Google Scholar

[16] M. A. Meitl, T.M. Dellinger, P.V. Braun, Adv. Funct. Mater. 13, 795 (2003) in Google Scholar

[17] Y. Deng, G.D. Wei, C.W. Nan, Chem. Phys. Lett. 368, 639 (2003) in Google Scholar

[18] Y. Deng, C.W. Nan, G.D. Wei, L. Guo, Y.H. Lin, Chem. Phys. Lett. 374, 410 (2003) in Google Scholar

[19] X. B. Zhao, Y.H. Zhang, X.H. Ji, Inorg. Chem. Comm. 7, 386 (2004) in Google Scholar

[20] X. B. Zhao, X.H. Ji, Y.H. Zhang, B.H. Lu, J. Alloys Compd. 368, 349 (2004) in Google Scholar

[21] C. Lazau, P. Sfirloaga, C. Orha, C. Ratiu, I. Grozescu, Mat. Lett. 65, 337 (2011) in Google Scholar

[22] A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer, Thin Solid Films 315, 99 (1998) in Google Scholar

[23] X. B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, J.P. Tu, Appl. Phys. A 80, 1567 (2005) in Google Scholar

[24] B. Zhou, B. Liu, L.-P. Jiang, J.-J. Zhu, Ultrasonics Sonochemistry 14, 229 (2007) in Google Scholar PubMed

[25] T. J. Mason, J.P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry (John Wiley and Sons, New York, 1988) 41 Search in Google Scholar

[26] K. S. Suslick, Ultrasound: Its Chemistry, Physical, and Biological Effects (VCH Publishers, New York, 1988) 123–146 Search in Google Scholar

[27] K. S. Suslick, Science 247, 1439 (1990) in Google Scholar PubMed

[28] Y. -H Park, L. Xue-Dong, Materials Research Society Proceedings 691, G8.24 (2001) doi:10.1557/PROC-691-G8.24 10.1557/PROC-691-G8.24Search in Google Scholar

[29] S. Sugihara, S. Kawashima, I. Yonekura, S.S. Hiroaki, Proceedings of the 16th International Conference on Thermoelectrics, ICT 63 (1997) Search in Google Scholar

[30] J. Navratil, I. Klichova, S. Karamazov, J. Sramkova, J. Horak, J. Solid State Chem. 140, 29 (1998) in Google Scholar

[31] P. Jeevanandam, Y. Diamant, M. Motiei, A. Gedanken, Phys. Chem. Chem. Phys. 3, 4107 (2001) in Google Scholar

[32] P. Cintas, J.-L. Luche, Green Chem. 1(3), 115 (1999) in Google Scholar

[33] A. Gedanken, Ultrason. Sonochem. 11, 47 (2004) in Google Scholar PubMed

[34] L. C. Hagenson, L.K. Doraiswamy, Chem. Eng. Sci. 53, 131 (1997) 10.1016/S0009-2509(97)00193-0Search in Google Scholar

[35] P. Benhacene, C. Labbe’, G. Petrier, Reverdy, New J. Chem. 19, 989 (1995) Search in Google Scholar

[36] S. Gupta, S. Neeleshwar, V. Kumar, Y.Y. Chen, Adv. Mat. Lett. 3(1), 50 (2012) in Google Scholar

Published Online: 2013-7-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 10.12.2023 from
Scroll to top button