Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 19, 2013

A silica-silver nanocomposite obtained by sol-gel method in the presence of silver nanoparticles

  • Carmen Racles EMAIL logo , Alexandra Nistor and Maria Cazacu
From the journal Open Chemistry


Silver nanoparticles (AgNPs) were obtained by a redox reaction, using a glucose-containing cyclosiloxane as a reduction agent and stabilizer. Then the AgNPs aqueous solution was used as the reaction medium for the sol-gel process, starting from tetraethylorthosilicate (TEOS) as silica precursor. The nanocomposite material resulted (SilAg) after solvent removal, aging and calcination and was investigated by infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-ray system (SEM/EDX), transmission electron microscopy (TEM), energy-dispersive X-ray fluorescence spectroscopy (EDXRF), X-ray diffraction (XRD) and dynamic vapor sorption (DVS). The results were compared to model silicas obtained without silver. A higher condensation degree in SilAg was obtained due to the basic medium used in the first step and was confirmed by a sorption capacity lower than for the model silicas. The solid surface area calculated with GAB analysis using DVS data for the water vapors is 210 m2 g−1. The nanocomposite showed good catalytic activity for hydrogen peroxide decomposition.

[1] K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J.P. Hill, Bull. Chem. Soc. Jpn. 85(2), 132 (2012) 10.1246/bcsj.20110162Search in Google Scholar

[2] R. Sui, P. Charpentier, Chem. Rev. 112, 3057 (2012) in Google Scholar PubMed

[3] K. C.F Leung, S. Xuan, X. Zhu, D. Wang, C.P. Chak, S.F. Lee, W. K.W. Ho, B.C.T. Chung, Chem. Soc. Rev. 41, 1911 (2012) in Google Scholar

[4] K. Saha, S.S. Agasti, C. Kim, X. Li, V. M. Rotello, Chem. Rev. 112, 2739 (2012) in Google Scholar PubMed PubMed Central

[5] Y. Benguedouara, N. Keghouchea, J. Belloni, Mater. Sci. Eng. B 177, 27 (2012) in Google Scholar

[6] W. M. Tsang, V. Stolojan, S.P. Wong, J.K.N. Linder, B.J. Sealy, S.R.P. Silva, Rev. Adv. Mater. Sci. 15, 179 (2007) Search in Google Scholar

[7] Y. H. Ye, Y.W. Jiang, M.W. Tsai, Y.T. Chang, C.Y Chen, D.C. Tzuang, Y.T. Wu, S.C. Lee, Appl. Phys. Lett. 93, 033113 (2008) in Google Scholar

[8] K. Aslan, M. Wu, J. R. Lakowicz, C.D. Geddes, J. Am. Chem. Soc. 129, 1524 (2007) in Google Scholar PubMed PubMed Central

[9] F. Zhang, G.B. Braun, Y. Shi, Y. Zhang, X. Sun, N.O. Reich, D. Zhao, G. Stucky, J. Am. Chem. Soc. 132, 2850 (2010) in Google Scholar PubMed

[10] M. Muniz-Miranda, J. Raman Spectrosc. 35, 839 (2004) in Google Scholar

[11] W. Wang, Z. Li, B. Gu, Z. Zhang, H. Xu, ACS Nano 3(11) 3493 (2009) in Google Scholar PubMed

[12] C. Y. Kim, S.C. Yi, J. Ceram. Process. Res. 10(4), 462 (2009) Search in Google Scholar

[13] S. Duhan, S. Devi, M. Srivastava, Indian J. Pure & Appl. Phys. 48, 271 (2010) Search in Google Scholar

[14] T. Gacoin, F. Chaput, J. P. Boilot, Chem. Mater. 5, 1150 (1993) in Google Scholar

[15] Y. Zhu, Y. Qian, M. Zhang, Z. Chen, G. Zhou, J. Mater. Chem. 4(20), 1619 (1994) in Google Scholar

[16] C. Wei-Ping; Z. Li-De; Chin. Phys. Lett. 14(2), 138 (1997) in Google Scholar

[17] Y. Chen, C. Wang, H. Liu, J. Qiu, X. Bao, Chem. Commun. 5298 (2005) 10.1039/b509595fSearch in Google Scholar PubMed

[18] D. Xing, H. Zhang, L. Wang, Y. Zhai, B. Yi, J. Membrane Sci. 296, 9 (2007) in Google Scholar

[19] W. Gac, A. Derylo-Marczewska, S. Pasieczna-Patkowska, N. Popivnyak, G. Zukocinski, J. Mol. Catal. A: Chem. 268, 15 (2007) in Google Scholar

[20] M. Boutros, J.M. Trichard, P. Da Costa, Appl. Catal. B: Environ. 91, 640 (2009) in Google Scholar

[21] D. D. Le, T.M.D. Dang, V.T. Chau, M.C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol. 1 015007 (2010) in Google Scholar

[22] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130, 1676 (2008) in Google Scholar PubMed

[23] M. Alexandru, M. Cristea, M. Cazacu, A. Ioanid, B. C. Simionescu, Polym. Composite 30, 751 (2009) in Google Scholar

[24] M. Alexandru, M. Cazacu, A. Nistor, V.E. Musteata, I. Stoica, C. Grigoras, B.C. Simionescu, J. Sol-Gel Sci. Techn. 56(3), 310 (2010) in Google Scholar

[25] M. Alexandru, M. Cazacu, C. Racles, C. Grigoras, Polym. Eng. Sci. 51(2), 78 (2011) in Google Scholar

[26] C. Racles, M. Cazacu, G. Hitruc, T. Hamaide, Colloid Polym. Sci. 287, 461 (2009) in Google Scholar

[27] C. Racles, M. Cazacu, A. Ioanid, A. Vlad, Macromol. Rapid Commun. 29, 1527 (2008) in Google Scholar

[28] C. Racles, A. Airinei, I. Stoica, A. Ioanid, J. Nanopart. Res. 12, 2163 (2010) in Google Scholar

[29] C. Racles, T. Hamaide, A. Ioanid, Appl. Organomet. Chem. 20(4), 235 (2006) in Google Scholar

[30] J. R. Goldstein, A.C.C. Tseung, J. Catalysis 32(3), 452 (1974) in Google Scholar

[31] R. Aelion, A. Loebel, F. Eirich, J. Am. Chem. Soc. 72, 5705 (1950) in Google Scholar

[32] C. Levard, E. M. Hotze, G.V. Lowry, G.E. Brown Jr., Environ. Sci. Technol. 46, 6900 (2012) in Google Scholar PubMed

[33] Silica, crystalline, by XRD: method 7500 (4), Manual of Analytical Methods (NMAM), 4th edition (Niosh, USA, 2003) Search in Google Scholar

[34] O. Ayyad, D. Munoz-Rojas, J. Oro-Sole, P. Gomez-Romero, Nanopart Res. 12, 337, (2010) in Google Scholar

[35] C. Racles, I. Stoica, F. Doroftei, V. Cozan, J. Nanopart Res. 13, 6971 (2011) in Google Scholar

[36] K. Toisawa, Y. Hayashi, H. Takizawa, Materials Transactions, 51(20), 1764 (2010) in Google Scholar

[37] L. H. Chou, I.C. Chung, P.Y. Hsu, Advances in Optical Data Storage Technology, Proceedings of SPIE Vol. 5643, (SPIE, Bellingham, WA, 2005), doi: 10.1117/12.577569 10.1117/12.577569Search in Google Scholar

[38] IUPAC Recommendations, Pure Appl. IUPAC Recommendations, Pure Appl. Chem. 57, 603 (1985) in Google Scholar

[39] IUPAC Recommendations, Pure Appl. IUPAC Recommendations, Pure Appl. Chem. 66, 1739 (1994) in Google Scholar

[40] S. J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982) Search in Google Scholar

[41] M. S. Gruszkiewicz, J. Horita, J.M. Simonson, R.E. Mesmer, Proceedings, Twenty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford California, January 1998, 2628, SGP-TR-158 Search in Google Scholar

[42] K. S.W. Sing, D.H. Everett, R.A. W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure & Appl. Chem. 57(4), 603 (1985) in Google Scholar

[43] A. E. Garcia-Bennett, S. Williamson, P. A. Wright, I. J. Shannon, J. Mater. Chem. 12, 3533 (2002) in Google Scholar

[44] S.L. Wang, C.T. Johnston, D.L. Bish, J.L. White, S.L. Hem, J. Colloid. Interface Sci. 260, 26 (2003) in Google Scholar

[45] A. M. Khalil, Surface Technology 15, 303 (1982) in Google Scholar

[46] S. Hogekamp, M. Pohl, Powder Technology 130, 385 (2003) in Google Scholar

[47] A. M. Kirillov, M.N. Kopylovich, M.V. Kirillova, M. Haukka, M.F.C. Guedes da Silva, A.J.L. Pombeiro, Angew. Chem. Int. Ed. 44, 4345 (2005) in Google Scholar PubMed

[48] V. Mirkhani, M. Moghadam, S. Tangestaninejad, I. Mohammadpoor-Baltork, E. Shams, N. Rasouli, Applied Catalysis A: General 334, 106 (2008) in Google Scholar

[49] M. Masteri-Farahani, F. Farzaneh, M. Ghandi, Journal of Molecular Catalysis A: Chemical 243, 170 (2006) in Google Scholar

Published Online: 2013-7-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.12.2023 from
Scroll to top button